

 RReeddvveerrss CCoonnssuullttiinngg LLttdd

Redvers COBOL XML

Interface

User Guide

Superfast Generator

RCFSTXML Version 2.9

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 2

Contents

Preface ... 5

Overview .. 6

Installation ... 7

Coding the COBOL Record Definition .. 9

Field Names ... 9

Default Tag Names ... 9

Override Tag Names .. 10

XML Attributes .. 10

XML Namespaces and SOAP ... 11

PICTURE Clause ... 12

Binary / Packed Fields ... 13

Other Clauses .. 14

BLANK WHEN ZERO .. 14

JUSTIFIED RIGHT ... 14

OCCURS .. 14

Clauses Not Supported .. 14

Structure .. 15

Mixed Content Elements .. 16

Non-tagged group level fields ... 17

Advanced Techniques ... 18

Formatting ... 18

Required Attributes and Elements ... 19

Optional Elements ... 20

Excluded Elements .. 21

Multiple XML Elements in One Field ... 22

XML Declaration Override ... 23

Document Type Definition Override ... 24

Repeating Groups ... 25

Using OCCURS... 25

Using Repeated Calls .. 26

Controlling the Point of Change ... 28

Orphan Repeats ... 30

Calling RCFSTXML ... 32

Parameters ... 32

CRD-OBJECT-AREA (input) ... 32

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 3

CRD-RECORD-COUNT (input) ... 32

COBOL-RECORD (input) ... 32

COBOL-RECORD-LENGTH (input) .. 32

XML-DOCUMENT (output) .. 32

XML-DOCUMENT-LENGTH (input & output) ... 33

FEEDBACK-CODE (output) ... 33

FEEDBACK-TEXT (output) .. 33

Calls to RCFSTXML ... 34

The First Call .. 34

Subsequent Calls .. 34

The Last Call .. 34

Sample Program Calling RCFSTXML .. 35

Structure Break .. 39

Normal Operation .. 39

What is a Structure Break? ... 40

How to code a Structure Break .. 40

When to use a Structure Break .. 41

Data Integrity .. 45

Character Range .. 45

Character References ... 45

Entity References ... 45

Empty Fields ... 46

CDATA.. 46

Maximum Document Size .. 47

Processing Instructions ... 47

Comments .. 47

User Maintained Variables .. 48

Program-Id ... 48

SELECT Statements ... 48

File Definition Statements ... 48

Maximum-COBOL-record-length .. 49

XML-declaration and XML-headers ... 49

Number-of-XML-headers ... 49

DTD-headers ... 49

Number-of-DTD-headers .. 50

End-of-line-chtrs .. 50

Maximum-number-of-fields ... 50

RCFSTCMP Compile Errors ... 51

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 4

RCFSTXML Feedback Messages... 54

Index .. 56

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 5

Preface

This document describes the installation and operation of the Redvers COBOL XML

Interface programs RCFSTCMP and RCFSTXML. It is designed for use by Information

Technology departments familiar with the COBOL and XML computer languages.

Program RCFSTCMP is a batch compile process that reads a COBOL Record Definition

(CRD) in order to produce a CRD object file for use in Redvers COBOL XML Interface

programs RCFSTXML and RCFSTCOB.

Program RCFSTXML is a COBOL subroutine that generates XML documents from COBOL

format data passed from customer applications. Output from RCFSTCMP provides

RCFSTXML with all the information it needs to produce application specific XML. The

generated well-formed XML standalone documents conform to the World Wide Web

Consortium (W3C) Extensible Markup Language (XML) 1.0 (Second Edition) definition.

RCFSTXML is the counterpart to RCFSTCOB which uses a similar process to parse XML

documents, returning the data in the form of a COBOL record.

This User Guide can be found on the internet at:

http://www.redversconsulting.com/downloads/user_guides/RCFSTXML_2.9_user.pdf

Copyright 2013 Redvers Consulting Ltd.

http://www.redversconsulting.com/downloads/user_guides/RCFSTXML_2.9_user.pdf

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 6

Overview

RCFSTXML is a COBOL subroutine that is compiled and linked into application programs

in order to generate well-formed XML documents. This particular interface level was built

for large scale applications requiring fast and efficient XML generation. In order to

achieve maximum speed and efficiency, the interpretation of the COBOL Record

Definition (CRD) has been passed to an off-line batch compile process (RCFSTCMP).

Central to the operation of the interface is the COBOL Record Definition (CRD). This

definition (usually a COBOL copybook member) is included in the application program

source code where it describes the working storage fields that are to be passed to

RCFSTXML. In addition, the CRD source is read by RCFSTCMP in a one-off batch process

which creates a CRD object file containing the raw field positions, lengths, data types etc.

At execution time, application programs load this CRD object file into working storage

and then pass it to RCFSTXML in a CALL statement.

 CRD

COBOL

DATA

Compilation time

Execution time

COBOL

APPLICATION

RCFSTXML

LINKAGE

XML

DOCUMENT

One-off batch process

CRD

OBJECT

RCFSTCMP

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 7

Installation

RCFSTXML and RCFSTCMP are self-contained source programs that require no copybooks

or objects. Before the product was despatched, the source code was passed through the

Redvers COBOL Cloaking Device which removes the intellectual property within the

source code without changing the logic.

To install RCFSTXML and RCFSTCMP, copy the “cloaked” source code into your source

code library and paste the activation key (sent in an email when ordering/downloading)

over the question marks in the last VALUE clause in WORKING-STORAGE. The programs can

then be compiled using your standard COBOL compiler.

RCFSTCMP is the batch CRD compiler program, required to pre-process CRD’s used by

the Redvers COBOL XML Interface (Superfast level). To run RCFSTCMP, a batch job will

be required with the following file attributes:

 RCCRDIN – (input) fixed length 80 byte sequential file containing COBOL source

code records of working storage field definitions (the CRD).

 RCCRDOBJ – (output) fixed length 132 byte sequential file with one record

equating to each field on the input source code.

 File handling for output from DISPLAY statements, so that record counts or

compilation errors can be viewed.

RCFSTXML is the XML generator subroutine component of the Redvers COBOL XML

Interface (Superfast level). To execute RCFSTXML, add a CALL statement to your COBOL

application, passing the appropriate CRD object file created by RCFSTCMP and the COBOL

data. See Calling RCFSTXML for CALL parameter details.

When running a free 30 day trial, the sample calling program RCFXCALL can also be

copied to your source code library, compiled and linked.

If your site uses single quotes (apostrophes) rather than double quotes (speech marks)

to delimit literals, a global change of all double quotes to single quotes can be made.

However, following the change, any single quotes within the XML declaration must be

changed to double quotes before compilation. The XML declaration can be found at the

start of WORKING-STORAGE just above a comment line containing:

“<UMV> XML-declaration”.

Various parameters, including the PROGRAM-ID, are defined as User Maintained Variables

in the source code so that they may be set to alternative values if desired. See User

Maintained Variables for details.

http://www.redversconsulting.com/cloaking_device.php

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 8

If you should encounter any problems during installation, please contact your account

manager or use our “Contact” facility at: http://www.redversconsulting.com/contact.php.

http://www.redversconsulting.com/contact.php

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 9

Coding the COBOL Record Definition

The COBOL Record Definition (CRD) defines the layout of the COBOL record passed to the

generator subroutine (RCFSTXML). This CRD is also used to define element and attribute

tag names, data formatting and general structure of the XML document to be generated.

Redvers Consulting offers two free tools to assist in drafting a CRD. These tools require

either an XML W3C schema or Document Type Definition (DTD) as input and can be

provided by your account manager or downloaded from the Partners area of our website.

Field Names

Default Tag Names

The COBOL field names in the CRD are used as the default XML start/end tags and the

data in the field becomes the XML element content.

Eg:

Field in CRD Content

 03 TV-program PIC X(20). “Sunday Night Live ”

Generates:

XML Document

 <TV-program>Sunday Night Live</TV-program>

Note: Upper/lower case settings in the tag/field name are preserved.

If there is no data in a field, the default result is for an empty element to be generated

(see Empty Fields for details on how empty fields are recognised).

Eg:

Field in CRD Content

 03 TV-program PIC X(20). spaces

Generates:

XML Document

 <TV-program/>

http://www.redversconsulting.com/partners.php

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 10

Override Tag Names

Because COBOL field names are subject to COBOL compiler rules such as reserved

words, character sets and the maximum length of a field name, the default tag may be

overridden by coding an alternate XML tag name within “<“ and “>“ in the comment line

or lines immediately following the field definition.

Eg:

Field in CRD Content

 03 TV-PROGRAM PIC X(20).

* <The_next_program_on_

* Channel-5_>

“Sunday Night Live ”

Generates:

XML Document

 <The_next_program_on_Channel-5_>Sunday Night Live</The_next_program_on_Channel-5_>

XML Attributes

If an XML attribute is required, this can be achieved by coding an “=“ at the end of an

override tag name in a subordinate field immediately after the group definition.

Eg:

Fields in CRD Content

 03 TV-program.

 05 prog-time

* <time=>

PIC X(5). “10:00”

 05 prog-name PIC X(20). “Sunday Night Live ”

Generates:

XML Document

 <TV-program time=”10:00”>

 <prog-name>Sunday Night Live</prog-name>

 </TV-program>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 11

XML Namespaces and SOAP

The interface supports the generation of XML namespace declarations and Simple Object

Access Protocol (SOAP) Envelopes using override tag names. Each namespace prefix is

defined in the override tag name and the HTTP references are placed in each field’s

content.

Eg:

Fields in CRD Content

 03 TV-ENVELOPE.

* <SOAP-ENV:Envelope>

 05 SOAP-NAMESP

* <xmlns:SOAP-ENV=>

PIC X(34). “http://schemas.xmlsoap.org/soap ”

 05 UK-NAMESPACE

* <xmlns:uk=>

PIC X(34). “http://www.greenwichmeantime.co.uk”

 05 US-NAMESPACE

* <xmlns:us=>

PIC X(34). “http://www.easternstandardtime.com”

 05 TV-BODY.

* <SOAP-ENV:Body>

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 PR-UK-TIME

* <uk:time>

PIC X(05). “10:00”

 07 PR-US-TIME

* <us:time>

PIC X(05). “05:00”

Generates:

XML Document

 < SOAP-ENV:Envelope

 xmlns:SOAP-ENV=” http://schemas.xmlsoap.org/soap”

 xmlns:uk=”http://www.greenwichmeantime.co.uk”

 xmlns:us=”http://www.easternstandardtime.com”>

 <SOAP-ENV:Body>

 <prog-name>Sunday Night Live</prog-name>

 <uk:time>10:00</uk:time>

 <us:time>05:00</us:time>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 12

PICTURE Clause

The picture clause in the CRD uses standard COBOL data editing features to control how

the data content of an XML element is formatted.

The interface also uses the picture clause to determine if the field is to be left or right

justified, removing the appropriate leading/trailing spaces or zeroes. However, it will not

remove blank characters if they are defined in the picture clause.

Eg:

Fields in CRD Content

 03 TV-program.

 05 prog-date PIC 99/99/9999. 31122013

 05 prog-name PIC BBX(20)BB. “Sunday Night Live ”

 05 prog-time PIC X(5). “10:00”

 05 prog-duration PIC ZZZ.999. 0.333

 05 prog-rating PIC S99. 5

 05 prog-cost PIC $$$,$$$,$$9.99DB. -2500000

Generates:

XML Document

 <TV-program>

 <prog-date>31/12/2013</prog-date>

 <prog-name> Sunday Night Live </prog-name>

 <prog-time>10:00</prog-time>

 <prog-duration>.333</prog-duration>

 <prog-rating>0E</prog-rating>

 <prog-cost>$2,500,000.00DB</prog-cost>

 </TV-program>

Note: The imbedded sign in the prog-rating picture clause remains imbedded in the

XML element content – not normally the desired result. A picture clause containing “-“ or

“+” (or the SIGN TRAILING/LEADING SEPARATE clause) would produce more readable

XML.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 13

Binary / Packed Fields

Due to the fact that XML is a character based language, binary and packed decimal

numeric data cannot be safely represented within element tags. For this reason binary

and packed decimal data is converted to a format known as base64. This format

produces a character range of “A” through “Z”, “a” through “z”, “0” through “9”, “+”, “/”

and “=“. This subset of ISO 646 characters is represented identically in all versions of

ASCII and in all versions of EBCDIC, which ensures a smooth translation from ASCII to

EBCDIC and vice-versa.

Eg:

Fields in CRD Content

 03 prog-rating PIC 99 PACKED-DECIMAL. 8

 03 prog-revenue PIC S9(7)V99 BINARY. 1234567.89

Generates:

XML Document

 <prog-rating>AI8=</prog-rating>

 <prog-revenue>B1vNFQ==</prog-revenue >

Note: On Little-endian platforms the base64 characters for prog-revenue will actually be

“Fc1bBw==” due to the different way binary values are stored.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 14

Other Clauses

Data definition clauses can be used to edit the appearance of XML data within an element

in just the same way they are used in COBOL. Some useful clauses are listed below:

BLANK WHEN ZERO

If the content of the field is zero this clause will result in the generation of an empty XML

element.

JUSTIFIED RIGHT

This clause will cause the suppression of spaces to the left of text rather than to the right

in the XML element data area.

OCCURS

This clause can be used to create a single dimension array of repeating data to be written

to the XML document. It can be used at group or elementary level. Unpopulated

occurrences within a populated array are generated as empty elements but trailing

occurrences with no data are entirely suppressed from the document.

Arrays of more than one dimension are generated by issuing multiple calls to the

interface subroutine – see Repeating Groups for details. This approach allows the

interface to generate an unlimited number of occurrences in unlimited dimensions (which

is the case for XML documents) using only a small amount of computer storage.

An OCCURS 1 clause can be used to suppress optional elements entirely from the XML

document, if there is no data in a field – see Optional Elements for details. The use of

OCCURS 1 does not constitute an additional dimension in an array.

Clauses Not Supported

The following data definition clauses are not currently supported in the CRD:

OCCURS DEPENDING ON

REDEFINES

SYNCHRONIZED/SYNC

Symbol “P” in the picture clause

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 15

Structure

Just as COBOL has a hierarchical structure in the relationship between group and

elementary fields in a data record, XML has hierarchy between parent and child elements

in an XML document. The interface uses the COBOL hierarchy to nest XML tags and data

so that element relationships can be constructed. All XML documents must start with a

root element and this root element corresponds to the top level COBOL field in the CRD.

Similarly, all lower COBOL levels are used to generate child XML elements within the root

parent.

Eg:

Fields in CRD Content

 01 TV-listings.

 03 broadcast-date PIC 99/99/9999. 11122013

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time PIC X(5). “10:00”

 07 prog-rating PIC Z9. 8

Generates:

XML Document

 <TV-listings>

 <broadcast-date>11/12/2013</broadcast-date>

 <channel>

 <channel-number>05</channel-number>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 <prog-rating>8</prog-rating>

 </TV-program>

 </channel>

 </TV-listings>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 16

Mixed Content Elements

When an XML element is a mixed content element (i.e. it contains data and other

subordinate elements), it needs to be logically partitioned across a COBOL group

definition. This type of generation is achieved using a group level data name with

subordinate non-tagged fields. Non-tagged fields are either defined using FILLER or a

null override tag name in the CRD (<>).

Eg:

Fields in CRD Content

 03 TV-program.

 05 FILLER PIC X(20). “Sunday Night Live ”

 05 prog-time PIC X(5). “10:00”

 05 END-TEXT

* <>

PIC X(10). “ tomorrow”

Generates:

XML Document

 <TV-program>Sunday Night Live

 <prog-time>10:00</prog-time> tomorrow

 </TV-program>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 17

Non-tagged group level fields

Non-tagged group level fields can be used in situations when fields need to be logically

linked under a COBOL group level but the group level element itself is not required in the

XML structure.

Eg:

Fields in CRD Content

 01 TV-listings.

 03 TV-program.

* <>

 05 prog-name PIC X(20). “Sunday Night Live ”

 05 prog-time PIC X(5). “10:00”

Generates:

XML Document

 <TV-listings>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 </TV-listings>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 18

Advanced Techniques

Formatting

By using override tag names, non-tagged fields, attributes and picture field editing

together, a variety of formats can be generated:

Eg:

Fields in CRD Content

 01 TV-listings.

 03 broadcast-date PIC 99/99/9999. 11122013

 03 channel.

 05 channel-number

* <number=>

PIC 99. 5

 05 TV-program.

 07 prog-name

* <>

PIC BBX(20)BB. “Sunday Night Live ”

 07 prog-time PIC X(5). “10:00”

 07 prog-rating.

 09 FILLER PIC X(20)B. “I gave it ”

 09 mark PIC Z9. 8

 09 out-of-text

* <>

PIC BX(20).

“out of ten ”

Generates:

XML Document

 <TV-listings>

 <broadcast-date>11/12/2013</broadcast-date>

 <channel number=”05”>

 <TV-program> Sunday Night Live

 <prog-time>10:00</prog-time>

 <prog-rating>I gave it

 <mark>8</mark> out of ten

 </prog-rating>

 </TV-program>

 </channel>

 </TV-listings>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 19

Required Attributes and Elements

Under normal circumstances, an attribute will only be generated if the corresponding

CRD field contains data (see Empty Fields for details of how the interface identifies a field

as containing data or as being empty). However, DTD or schema validation rules may

require the presence of an attribute even though there is no data to report. Required

attributes would be defined in a DTD with the #REQUIRED parameter or in an XML

schema with use=”required”.

The introduction of release 2.5 enables the forced generation of required XML attributes

by the coding of double “<” and “>” marks surrounding the override tag name in the

CRD. Whenever the parent of a required attribute is generated, the interface will also

generate the required attribute regardless of content.

Elements can also be marked as required using the double “<” and “>” marks, even

though elements are generated by default anyway. The effect of defining empty

elements as required causes the generation of separate start and end tags

(<tagname></tagname>) rather than the usual empty tag (<tagname/>). For numeric

elements, this may place zeroes in the element content, depending on the picture clause.

Eg:

Fields in CRD Content

 03 channel.

 05 channel-number

* <<number=>>

PIC 99. 00

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time PIC X(5). spaces

 07 prog-rating.

 09 PROG-MARK

* <<mark>>

PIC Z9. 00

Generates:

XML Document

 <channel number=”00”>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time/>

 <prog-rating>

 <mark>0</mark>

 </prog-rating>

 </TV-program>

 </channel>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 20

Optional Elements

As mentioned in the Occurs section of Other Clauses, trailing occurrences in a CRD array

that are empty, are suppressed from the XML document. Therefore, using the same

logic, an OCCURS 1 clause can be used to suppress any element entirely from the XML

document if it is deemed to be empty (see Empty Fields for details of how the interface

identifies empty fields). The interface treats fields defined with OCCURS 1 as it would the

final occurrence of any multiply occurring field and will therefore not generate the

element, if it is empty.

The OCCURS 1 clause can therefore be coded on all optional elements, at group or

elementary level, in order to remove them from the XML document when there is no data

to report. Optional elements would be defined with an occurrence indicator of “?” or “*”

in a DTD or with minOccurs=”0” in an XML schema.

Eg:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time OCCURS 1 PIC X(5). spaces

 07 prog-rating OCCURS 1.

 09 PROG-MARK

* <mark>

PIC Z9. 00

Generates:

XML Document

 <channel>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 </TV-program>

 </channel>

Note: If the use of OCCURS 1 causes multiple value 1 subscripts in the application, these

subscripts can be avoided by placing a “REPLACING == OCCURS 1.== BY ==.==” on the

COPY statement for the CRD.

Note2: From release 2.8, it is possible to make all elements optional, by default,
removing the need for OCCURS 1 in the CRD. This processing can be switched on by the

use of a special processing flag set in your copy of RCFSTXML. For more information,

please contact your account manager.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 21

Excluded Elements

A COBOL Record Definition (CRD), used by the Redvers COBOL XML Interface is

frequently in the form of a COBOL “copybook” or “include” and therefore may be used by

an application for a variety of purposes, outside the calling of the Redvers XML generator

routine. As a result, there may be fields in the CRD which relate to application processes

outside the Redvers COBOL XML Interface and therefore should not result in the

generation of an XML element for such a field.

From release 2.7, this issue has been addressed by providing a new type of CRD override

tag name, within parentheses, in the form: <(tagname)>. Under these circumstances,

the entry is still defined as a COBOL field and can still be used by the application for

other purposes but no XML will be produced for this field, regardless of its content. In

effect, the tag name specified becomes useful for documentation purposes only.

An example of an excluded field in a CRD can be seen below:

Field in the CRD

 03 TV-PROGRAM

* <(Exclude_Me)>

PIC X(20).

Note: Excluded fields must still be included in the total length of the CRD when
populating the COBOL-RECORD-LENGTH parameter, otherwise a FEEDBACK-CODE of

+0110 will be returned.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 22

Multiple XML Elements in One Field

Under normal circumstances RCFSTXML generates one XML element for every

populated/changed field in the CRD. Release 2.9 introduced the capability to write entire

XML structures, if these structures have previously been placed in a CRD field.

To enable a CRD field to be used in this way (avoiding any conversion of “<” characters

to “<” etc.), an override tag name must be coded for the CRD field, followed by “/C”

(upper case or lower case). i.e.: <override_name/C>.

Eg:

Fields in CRD Populated with

 01 TV-listings.

 03 broadcast-date PIC 99/99/9999. 10012013

 03 TV-PROGRAM

* <TV-program/C>

PIC X(100). “<prog-name>Sunday Night

Live</prog-name><prog-time>

10:00</prog-time><prog-

rating>8</prog-rating> “

Generates:

XML Document

 <TV-listings>

 <broadcast-date>10/01/2013</broadcast-date>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 <prog-rating>8</prog-rating>

 </TV-program>

 </TV-listings>

Note: If the COBOL field name doesn’t need to be overridden, the override tag name can

be omitted. Eg: </c>.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 23

XML Declaration Override

The default XML document declaration (eg: “<?xml version='1.0' encoding='UTF-8'?>”) is

defined by the XML-declaration User Maintained Variable (See User Maintained Variables

for details), coded near the start of WORKING-STORAGE. As there is only one default value

for each interface generator subroutine, this can be a limitation for applications requiring

different declarations for each XML document type.

To override the default declaration, a comment line must be coded before any field

definition in the CRD, starting with the characters “<?xml”. This comment string will then

replace the default declaration at the start of the output XML document.

Eg:

CRD

*** Start of COBOL Record Definition (CRD)

* An override XML declaration follows:

*<?xml version='1.0' encoding='ISO-8859-1'?>

 01 TV-listings.

 03 channel.

…

Generates:

XML Document

<?xml version="1.0" encoding "'ISO-8859-1"?>

<!-- This XML document was generated by RCFSTXML -->

<TV-listings>

 <channel>

…

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 24

Document Type Definition Override

A default external (SYSTEM) Document Type Definition (DTD) can be specified in the

XML-Header UMV (see User Maintained Variables for details) or an internal DTD can be

added to the XML document by coding a “DTD CALL” in the calling application (see Calls

to RCFSTXML for details). However, the hard-coding of external DTD information in

working storage can make application specific DTD maintenance difficult.

From Release 2.9, an application specific, external DTD can be coded in comment lines at

the start of the CRD, starting with the characters “<!DOCTYPE” (similar to the way XML

declaration overrides are specified).

Eg:

CRD

000010*** Start of COBOL Record Definition (CRD)

000020* An override DTD follows:

000030*<!DOCTYPE TV-listings SYSTEM 'http://devtest.devsys.version2

000040*.dtd'>

000050 01 TV-listings.

000060 03 channel.

…

Generates:

XML Document

<?xml version="1.0" encoding "UTF-8"?>

<!-- This XML document was generated by RCFSTXML -->

<!DOCTYPE TV-listings SYSTEM 'http://devtest.devsys.version2.dtd'>

<TV-listings>

 <channel>

…

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 25

Repeating Groups

In business applications, it would be rare for an XML document to contain only a single

set of information details. Elements and element groups are often repeated to reflect

multiple sets and subsets of information. In order to generate this repeating data in

XML, single dimension arrays can be defined in the CRD using the COBOL OCCURS clause.

Alternatively, when the number of occurrences is unknown or more than one dimension

of repeating data is present, multiple calls can be made to RCFSTXML and only the

changed information will be generated in XML. Using the latter technique, XML

documents up to 99MB in length can be generated.

Using OCCURS

A single dimension array of repeating information can be passed to RCFSTXML in a CRD

table which results in the generation of multiple sets of XML elements until all remaining

occurrences in the CRD are unpopulated.

Eg:

Fields in CRD
Occurr-

ence
Content

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program OCCURS 5. 1

 07 prog-name PIC X(17). 1 “Sunday Night Live”

 07 prog-time PIC X(5). 1 “10:00”

 07 prog-rating PIC Z9 OCCURS 1. 1 8

 05 TV-program OCCURS 5. 2

 07 prog-name PIC X(17). 2 “News ”

 07 prog-time PIC X(5). 2 “11:30”

 07 prog-rating PIC Z9 OCCURS 1. 2 0

 05 TV-program OCCURS 5. 3

 07 prog-name PIC X(17). 3 spaces

 07 prog-time PIC X(5). 3 spaces

 07 prog-rating PIC Z9 OCCURS 1. 3 0

 05 TV-program OCCURS 5. 4

 07 prog-name PIC X(17). 4 “Weather ”

 07 prog-time PIC X(5). 4 “11:55”

 07 prog-rating PIC Z9 OCCURS 1. 4 0

 05 TV-program OCCURS 5. 5

 07 prog-name PIC X(17). 5 spaces

 07 prog-time PIC X(5). 5 spaces

 07 prog-rating PIC Z9 OCCURS 1. 5 0

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 26

Generates:

XML Document

 <channel>

 <channel-number>05</channel-number>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 <prog-rating>8</prog-rating>

 </TV-program>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-time>11:30</prog-time>

 </TV-program>

 <TV-program/>

 <TV-program>

 <prog-name>Weather</prog-name>

 <prog-time>11:55</prog-time>

 </TV-program>

 </channel>

Note: The <prog-rating> field and the fifth occurrence of <TV-program> are suppressed

from the document when they are not populated but the third occurrence of <TV-

program> is generated because subsequent occurrences exist.

Using Repeated Calls

An unlimited number of occurrences and dimensions (which is the case for XML

documents) can be generated most efficiently by the use of repeated calls to the

interface generator module. For each successive call, elements are generated for the

lowest level covering all changed fields in the CRD along with the minimum of related

parent and child elements necessary to maintain the data relationships before and after

the change. These repeated sets of related data items are collectively known to the

program as the Point of Change (POC) for that call.

The example on the next page generates a two dimensional array in XML for multiple

<TV-program> elements within multiple <channel> elements using repeated calls and a

smaller CRD.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 27

Eg: The first call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time PIC X(5). “10:00”

 The second call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-time PIC X(5). “11:30”

 The third call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 6

 05 TV-program.

 07 prog-name PIC X(20). “Westenders ”

 07 prog-time PIC X(5). “08:00”

Generates:

XML Document

 <channel>

 <channel-number>05</channel-number>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 </TV-program>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-time>11:30</prog-time>

 </TV-program>

 </channel>

 <channel>

 <channel-number>06</channel-number>

 <TV-program>

 <prog-name>Westenders</prog-name>

 <prog-time>08:00</prog-time>

 </TV-program>

 </channel>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 28

Controlling the Point of Change

In order to provide a facility for the calling application to control the POC and force the

regeneration of unchanged XML elements higher in the record hierarchy, a technique

using dummy fields can be applied. When RCFSTXML reads a CRD, it converts any low-

value characters in non-binary fields to spaces as it stores the information internally.

Low-values remain in the application’s CRD but the internal image of the data passed

now contains spaces instead. The result of this process causes RCFSTXML to regard the

dummy field as a changed field and therefore it generates additional XML to reflect this

implied change. Of course, no XML is generated for the dummy field itself (having no tag

and no data) but XML is generated for the parent of the dummy field. This implied

change will continue for all subsequent calls, until low-values are removed from the

dummy field by the application program.

In the example below, the dummy field in TV-today forces the second call to consider

TV-today as the POC. Consequentially XML is generated for the entire TV-today group

even though only prog-name and prog-time have changed.

Eg:

 The first call:

Fields in CRD Content

 01 TV-listings.

 03 TV-today.

 05 Dummy-field

* <>

PIC X. Low-values

 05 broadcast-date PIC 99/99/9999. 11122013

 05 channel.

 07 channel-number PIC 99. 5

 07 TV-program.

 09 prog-name PIC X(20). “Sunday Night Live ”

 09 prog-time PIC X(5). “10:00”

 The second call:

Fields in CRD Content

 01 TV-listings.

 03 TV-today.

 05 Dummy-field

* <>

PIC X. Low-values

 05 broadcast-date PIC 99/99/9999. 11122013

 05 channel.

 07 channel-number PIC 99. 5

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 29

 07 TV-program.

 09 prog-name PIC X(20). “News ”

 09 prog-time PIC X(5). “11:30”

Generates:

XML Document

 <TV-listings>

 <TV-today>

 <broadcast-date>11/12/2013</broadcast-date>

 <channel>

 <channel-number>05</channel-number>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 </TV-program>

 </channel>

 </TV-today>

 <TV-today>

 <broadcast-date>11/12/2013</broadcast-date>

 <channel>

 <channel-number>05</channel-number>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-time>11:30</prog-time>

 </TV-program>

 </channel>

 </TV-today>

 </TV-listings>

If there is a possibility that the CRD could be populated with exactly the same data in

consecutive calls (duplicate records on the input), a similar technique can be used to

generate a minimum of XML regardless of the COBOL input. This is done by placing a

non-tagged dummy field, populated with low-values, just below the group level to be

used as the minimum POC.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 30

Orphan Repeats

Some XML documents require elements or groups of elements to repeat without the

presence of a parent element for each occurrence. This type of generation is achieved

using a non-tagged group level. Non-tagged group level fields are either defined using

FILLER or a null override name in the CRD.

Eg:

 The first call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 05

 05 TV-program

* <>

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time PIC X(5). “10:00”

 The second call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 05

 05 TV-program

* <>

 07 prog-name PIC X(20). “News ”

 07 prog-time PIC X(5). spaces

 The third call:

Fields in CRD Content

 03 channel.

 05 channel-number PIC 99. 05

 05 TV-program

* <>

 07 prog-name PIC X(20). “Weather ”

 07 prog-time PIC X(5). “11:55”

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 31

Generates:

XML Document

 <channel>

 <channel-number>05</channel-number>

 <prog-name>Sunday Night Live</prog-name>

 <prog-time>10:00</prog-time>

 <prog-name>News</prog-name>

 <prog-time/>

 <prog-name>Weather</prog-name>

 <prog-time>11:55</prog-time>

 </channel>

Note: The non-tagged TV-program group is the POC even though it doesn’t appear on

the XML document.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 32

Calling RCFSTXML

Parameters

A call to RCFSTXML requires eight parameters in the following sequence:

CRD-OBJECT-AREA (input)

This is the area of storage, loaded by the application, which holds the CRD object output

from RCFSTCMP. The CRD defined for the XML document will have been passed through

RCFSTCMP in a one-off batch process and the output placed here.

CRD-RECORD-COUNT (input)

This S9(8) binary field contains a count of the number of 132 byte records that make up

CRD-OBJECT-AREA.

COBOL-RECORD (input)

This is the top level field name in the CRD. It will hold the COBOL records passed to

RCFSTXML.

COBOL-RECORD-LENGTH (input)

This S9(8) binary field must be set to the logical length of COBOL-RECORD. It is used

in validation only, to ensure COBOL-RECORD reflects the CRD in CRD-OBJECT-AREA.

If the logical length of COBOL-RECORD is difficult to determine (perhaps the same

COBOL-RECORD storage area is being used to process several CRD’s of different

lengths), this value can be found in the appropriate CRD-OBJECT-AREA. The value is

defined as an unsigned 8 digit binary field (PIC 9(8) COMP) in positions 111 through 114

of CRD-OBJECT-AREA.

XML-DOCUMENT (output)

This is the field name of the XML document area capable of holding the entire XML

document to be generated.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 33

XML-DOCUMENT-LENGTH (input & output)

This S9(8) binary field must be set to the length of the XML-DOCUMENT field and not

changed during the generation process. When RCFSTXML has completed building the

document, it will change this value to reflect the actual XML text length of the newly built

document. The maximum XML document length supported by the interface is

99,999,999 characters.

FEEDBACK-CODE (output)

This S9(4) binary field is set by RCFSTXML to return the status of a call to the interface.

This field should be checked for non-zero values after each call. If the call was successful

this field will be set to zero otherwise it will contain an error code.

See Feedback Messages at the end of this document for further information.

FEEDBACK-TEXT (output)

This eighty byte text field is set by RCFSTXML with diagnostic information on the results

of each call. For the first successful call this area contains CRD parsing information, for

subsequent calls it contains the number of XML lines generated so far and the call count.

For unsuccessful calls it contains an error message.

See Feedback Messages at the end of this document for further information.

Note: The parameter names used in this manual are suggestions only and may be
changed to names more suitable to the application making the call.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 34

Calls to RCFSTXML

The First Call

If a Document Type Definition (DTD) is required at the start of the XML document, the

first call to RCFSTXML must be made with the characters “DTD” in position one of

COBOL-RECORD followed by spaces. COBOL-RECORD-LENGTH must be set to the full

logical length of the CRD. If a Document Type Definition (DTD) is not required, the first

call to RCFSTXML is made in the normal way - with a fully populated COBOL-RECORD as

defined in the CRD.

Once processing is complete, FEEDBACK-CODE is set to zero and FEEDBACK-TEXT is

populated with details of the CRD.

Subsequent Calls

Calls should be made to RCFSTXML (while FEEDBACK-CODE remains zero) with a fully

populated COBOL-RECORD until the application data is exhausted.

After successful completion of each call, FEEDBACK-CODE is set to zero and

FEEDBACK-TEXT is populated with the number of calls made and number of XML lines

generated so far.

The Last Call

After all the application data has been passed to RCFSTXML, a final call must be made to

allow the interface to complete the XML document. This final call is done, either by

moving HIGH-VALUES to COBOL-RECORD or by moving ZERO to the COBOL-RECORD-

LENGTH parameter – either option will produce the same result.

After successful completion of this call, XML-DOCUMENT-LENGTH is set to the actual

length of the generated XML document, FEEDBACK-CODE is set to zero and

FEEDBACK-TEXT is populated with the total number of calls made and total number of

XML lines generated.

Note: If RCFSTXML remains in memory after the last call, it can be reused to generate

another XML document for the same, or a different, CRD by repopulating the calling

parameters and restarting the call sequence from The First Call.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 35

Note2: If there is a requirement to generate multiple XML documents simultaneously,

this can be done by calling a copy of RCFSTXML, compiled under a different Program-Id

using different calling parameters (Program-id is a User Maintained Variable).

Sample Program Calling RCFSTXML

000040**

000050* This sample program shows how RCFSTXML is called to generate *

000060* an XML document in storage from COBOL record input. *

000070* *

000080* The CRD associated with this application will need to be *

000090* passed through the Redvers CRD compiler (RCFSTCMP) before *

000100* being loaded by the application. The CRD object file can *

000110* exist in storage, on a database or on a flat file. This *

000120* sample program uses a flat file (RCCRDOBJ). *

000130**

000132

000140 ENVIRONMENT DIVISION.

000150 INPUT-OUTPUT SECTION.

000160 FILE-CONTROL.

000170

000180 SELECT CRD-FILE ASSIGN RCCRDOBJ.

000190

000200 DATA DIVISION.

000210 FILE SECTION.

000220

000230 FD CRD-FILE

000240 BLOCK CONTAINS 0 CHARACTERS

000250 LABEL RECORDS STANDARD.

000260 01 CRD-RECORD PIC X(132).

000270

000280 WORKING-STORAGE SECTION.

000290

000300*** Storage area for the CRD object file:

000310 01 CRD-OBJECT-AREA.

000320 03 CRD-OBJECT-RECORD PIC X(132) OCCURS 400.

000330

000340*** Start of COBOL Record Definition (CRD)

000350 01 TV-listings.

000360 03 channel.

000370 05 channel-number PIC 99.

000380* <number=>

000390 05 channel-name PIC X(20).

000400* <>

000410 05 TV-program OCCURS 10.

000420 07 prog-name PIC BBX(20)BB.

000430 07 prog-time PIC X(05).

000440 07 prog-rating OCCURS 1.

000450* <rating>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 36

000460 09 rating-txt1 PIC X(20)B.

000470* <>

000480 09 mark PIC Z9.

000490 09 rating-txt2 PIC BX(20).

000500* <>

000510 05 channel-owner PIC X(20).

000520* <>

000530*** End of COBOL Record Definition (CRD)

000540

000550*** Storage area for the largest possible XML message:

000560 01 XML-DOCUMENT PIC X(16000) VALUE SPACE.

000570

000580 01 OTHER-PARAMETER-FIELDS.

000590 03 CRD-RECORD-COUNT PIC S9(8) BINARY VALUE ZERO.

000600 03 COBOL-RECORD-LENGTH PIC S9(8) BINARY VALUE ZERO.

000610 03 XML-DOCUMENT-LENGTH PIC S9(8) BINARY VALUE ZERO.

000620 03 FEEDBACK-CODE PIC S9(4) BINARY VALUE ZERO.

000630 03 FEEDBACK-TEXT PIC X(80) VALUE SPACE.

000640

000650 01 MISCELLANEOUS-FIELDS.

000660 03 CRD-TABLE-SIZE PIC 9(4) VALUE ZERO.

000670 03 CRD-FLAG PIC X VALUE SPACE.

000680 88 START-OF-CRD VALUE SPACE.

000690 88 END-OF-CRD VALUE "E".

000700

000710 PROCEDURE DIVISION.

000720

000730 TOP-LEVEL SECTION.

000740**

000750* This section loads the CRD object file into CRD-OBJECT-AREA *

000760* and populates the COBOL record (CRD). It then calls RCFSTXML *

000770* once for each data group to generate the XML document. *

000780**

000790 TOP-ENTER.

000800

000810 COMPUTE CRD-TABLE-SIZE = LENGTH OF CRD-OBJECT-AREA

000820 / LENGTH OF CRD-OBJECT-RECORD (1).

000830 MOVE LENGTH OF TV-LISTINGS TO COBOL-RECORD-LENGTH.

000840 MOVE LENGTH OF XML-DOCUMENT TO XML-DOCUMENT-LENGTH.

000850

000860 PERFORM A-LOAD-CRD.

000870

000930 INITIALIZE TV-LISTINGS.

000940

000950 MOVE 3 TO CHANNEL-NUMBER.

000960 MOVE "Popular TV" TO CHANNEL-NAME.

000970 MOVE "Mr Nice Guy " TO CHANNEL-OWNER.

000980

000990 MOVE "Sunday Night Live" TO PROG-NAME (1).

001000 MOVE "10:00" TO PROG-TIME (1).

001010 MOVE "I gave it " TO RATING-TXT1 (1 1).

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 37

001020 MOVE 8 TO MARK (1 1).

001030 MOVE "out of ten " TO RATING-TXT2 (1 1).

001040

001050 MOVE "News" TO PROG-NAME (2).

001060 MOVE "11:30" TO PROG-TIME (2).

001070

001080 MOVE "Weather" TO PROG-NAME (3).

001090 MOVE "11:55" TO PROG-TIME (3).

001100

001110*** The following call will generate XML for three programs on

001120*** channel 3 using the TV-program array.

001130 PERFORM C-CALL-RCFSTXML.

001140

001150 INITIALIZE CHANNEL.

001160

001170 MOVE 5 TO CHANNEL-NUMBER.

001180 MOVE "Soaps & Soaps" TO CHANNEL-NAME.

001190 MOVE "Steady Eddie" TO CHANNEL-OWNER.

001200

001210 MOVE "Westenders" TO PROG-NAME (1).

001220 MOVE "09:00" TO PROG-TIME (1).

001230

001240*** The following (repeated) call will generate XML for all

001250*** changed and populated elements. ie: channel 5.

001260 PERFORM C-CALL-RCFSTXML.

001270

001280 MOVE HIGH-VALUES TO TV-LISTINGS.

001290

001300*** This final call completes the document.

001310 PERFORM C-CALL-RCFSTXML.

001320

001330*** Process XML-DOCUMENT (1:XML-DOCUMENT-LENGTH)

001400

001410 STOP RUN.

001420

001430 TOP-EXIT.

001440 EXIT.

001450

001460

001470 A-LOAD-CRD SECTION.

001480**

001490* This section reads the CRD object file into CRD-OBJECT-AREA. *

001500**

001510 A-ENTER.

001520

001530 OPEN INPUT CRD-FILE.

001540

001550 PERFORM

001560 UNTIL END-OF-CRD

001570 OR CRD-RECORD-COUNT = CRD-TABLE-SIZE

001580 READ CRD-FILE

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 38

001590 AT END

001600 SET END-OF-CRD TO TRUE

001610 NOT AT END

001620 ADD 1 TO CRD-RECORD-COUNT

001630 MOVE CRD-RECORD TO CRD-OBJECT-RECORD

001640 (CRD-RECORD-COUNT)

001650 END-READ

001660 END-PERFORM.

001670

001680 CLOSE CRD-FILE.

001690

001700 IF NOT END-OF-CRD

001710 DISPLAY "CRD-OBJECT-AREA TABLE IS FULL!"

001720 DISPLAY "CURRENT SIZE IS: " CRD-TABLE-SIZE

001730 STOP RUN

001740 END-IF.

001750

001760 A-EXIT.

001770 EXIT.

001780

001790

001800 C-CALL-RCFSTXML SECTION.

001810**

001820* This section executes the CALL to the interface and checks *

001830* the feedback code. *

001840**

001850 C-ENTER.

001860

001870 CALL "RCFSTXML" USING CRD-OBJECT-AREA

001880 CRD-RECORD-COUNT

001890 TV-LISTINGS

001900 COBOL-RECORD-LENGTH

001910 XML-DOCUMENT

001920 XML-DOCUMENT-LENGTH

001930 FEEDBACK-CODE

001940 FEEDBACK-TEXT.

001950

001960 IF FEEDBACK-CODE > ZERO

001970 DISPLAY "BAD RETURN FROM RCFSTXML - FEEDBACK CODE IS "

001980 FEEDBACK-CODE

001990 DISPLAY "MESSAGE READS: " FEEDBACK-TEXT

002000 STOP RUN

002010 END-IF.

002020

002030 C-EXIT.

002040 EXIT.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 39

Structure Break

Structure Break processing was introduced with version 2.4 of the interface. It is used

when an XML document is required to hold more than one hierarchy of information,

giving rise to many-to-many relationships within the document. Alternatively, a

structure break can be used when totals are to be reported at the end of the document

which are not known when the initial population of the CRD is performed.

Normal Operation

The interface generator module creates XML elements from the series of data images

passed to it in the COBOL Record Definition (CRD). For each call, the prior image of any

changed fields are translated into XML elements along with any start/end tags necessary

to ensure the generation of a well formed document. In addition to this, elements are

generated in order to preserve the field relationships that exist for each image of the

CRD passed to the generator subroutine.

Eg:

 The first call:

Fields in CRD Content

 03 TV-program.

 05 prog-name PIC X(20). “Sunday Night Live ”

 05 prog-cost PIC $$$,$$9.99. 2500000

 The second call:

Fields in CRD Content

 03 TV-program.

 05 prog-name PIC X(20). “Sunday Night Live ”

 05 prog-cost PIC $$$,$$9.99. 1000000

 The third call:

Fields in CRD Content

 03 TV-program.

 05 prog-name PIC X(20). “News ”

 05 prog-cost PIC $$$,$$9.99. 1000000

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 40

Generates:

XML Document

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-cost>$25,000.00</prog-cost>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

In the example above, “Sunday Night Live” has two costs associated with it and therefore

two <prog-cost> elements are generated. This reflects the one-to-many relationship

between <prog-name> and <prog-cost>. However, when “News” is passed to the interface

with a prog-cost equal to the previous prog-cost (by pure coincidence) the interface

does not just generate the <prog-name> element, instead it rebuilds the XML from the

parent of <prog-name> and <prog-cost>. The interface does this because it records the

fact that while “Sunday Night Live” existed in the CRD for both $25,000.00 and

$10,000.00, “News” only existed for a cost of $10,000.00. This is the desired outcome

99% of the time.

What is a Structure Break?

A Structure Break causes the generator subroutine to complete the creation of XML for

data passed in the prior call and then wipe clean its record of what values previously

existed on the CRD. Generation is then restarted by the next normal call.

How to code a Structure Break

A Structure Break is triggered by moving LOW-VALUES (binary zeroes) to the entire CRD

area and calling the generator subroutine. On returning from the call, the generator will

repopulate the CRD with all the data values that existed prior to the Structure Break call.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 41

When to use a Structure Break

A Structure Break can be used to create “many-to-many” relationships between elements

in an XML document. Usually, if a single data file is being used to create XML, only “one-

to-many” relationships exist between the fields. For example, on one day there would be

many channels, and one channel would have many programs, and one program would

have many costs, etc. However, if the XML document is the result of more than one

source file “many-to-many” relationships may exist.

The example below shows how a Structure Break can be used to list television program

information as well as all staff associated with a day’s production, resulting in a “many to

many” relationship between <TV-program> and <staff-name>.

Eg:

 The first call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-cost PIC $$$,$$9.99. 2500000

 05 channel-staff.

 07 staff-name PIC X(20). spaces

 The second call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 channel-staff.

 07 staff-name PIC X(20). spaces

 The third call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 channel-staff.

 07 staff-name PIC X(20). spaces

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 42

 The fourth call (Structure Break):

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). low values

 07 prog-cost PIC $$$,$$9.99. low values

 05 channel-staff.

 07 staff-name PIC X(20). low values

 The fifth call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 channel-staff.

 07 staff-name PIC X(20). John Smith

The sixth call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 channel-staff.

 07 staff-name PIC X(20). Jane Jones

Generates:

XML Document

 <channel>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-cost>$25,000.00</prog-cost>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

 <channel-staff>

 <staff-name>John Smith</staff-name>

 <staff-name>Jane Jones</staff-name>

 </channel-staff>

 </channel>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 43

In the previous example, the content of staff-name was spaces for all calls prior to the

Structure Break, yet no empty element (<staff-name/>) was generated. This is because

all record of the spaces in staff-name was erased by the Structure Break call. This leads

to the other application for Structure Breaks: trailer totals.

If an XML element is required at the end of the document, containing a control total of a

numeric field, or even a hash total of several fields, this can be generated after a

Structure Break, thereby delaying the need to populate the field in the CRD until the end

of generation – when the value of the field is known.

The example below shows how a Structure Break can be used to generate the <total-

cost> element for a day’s programs only when the value of the total is known to the

application.

Eg:

 The first call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-cost PIC $$$,$$9.99. 2500000

 05 total-cost PIC $$$,$$9.99. zero

 The second call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 total-cost PIC $$$,$$9.99. zero

 The third call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 total-cost PIC $$$,$$9.99. zero

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 44

 The fourth call (Structure Break):

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). low values

 07 prog-cost PIC $$$,$$9.99. low values

 05 total-cost PIC $$$,$$9.99. Low values

 The fifth call:

Fields in CRD Content

 03 channel.

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-cost PIC $$$,$$9.99. 1000000

 05 total-cost PIC $$$,$$9.99. 4500000

Generates:

XML Document

 <channel>

 <TV-program>

 <prog-name>Sunday Night Live</prog-name>

 <prog-cost>$25,000.00</prog-cost>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

 <TV-program>

 <prog-name>News</prog-name>

 <prog-cost>$10,000.00</prog-cost>

 </TV-program>

 <total-cost>$45,000.00</total-cost>

 </channel>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 45

Data Integrity

Character Range

RCFSTXML accepts single byte characters in the hexadecimal range “00” through “FF”.

However, the use of hex “00” (null/low-values) has special meaning to the interface and

these characters are converted to spaces before being passed to the XML document (see

Controlling the Point of Change section). The low-values character is not within the XML

character range defined by the W3C Extensible Markup Language (XML) 1.0 (Second

Edition) definition. It is the application’s responsibility to ensure that only characters

within the permitted range of the XML protocol are generated.

Character References

Unicode character references (eg: î = î) may appear in entity declarations or as

part of the data passed in the CRD. No attempt is made to interpret their character form.

Entity References

Data is usually transferred from CRD fields to XML elements without alteration. However,

because certain characters are interpreted as instructions by XML parsers, these

characters are automatically translated to their predefined entity references. The

characters affected and their translations are listed below:

Character Description Entity Reference

> greater than >

< less than <

& ampersand &

‘ apostrophe '

“ double quote "

From Release 2.9, application specific entity references may also be defined in the CRD

as they would be coded in a DTD – eg: <!ENTITY auml 'ä'>. Customers interested in

using this capability should contact their account manager for more details.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 46

Empty Fields

An elementary alpha or alphanumeric field in the CRD is deemed empty if it contains only

spaces and/or low values. An elementary numeric field in the CRD is deemed empty if it

contains only zeroes and/or numeric edit characters (“£”, “$”, “/”, “*”, “.”, “-“, “+”, “CR”, “DB” or

”,”). A group level CRD field is deemed empty if all of its subordinate fields are deemed

empty and it contains no mandatory (required) attributes and it contains no mandatory

(minOccurs>”0”) child elements.

When an empty field has an override tag name ending with an “=”, the attribute is not

generated unless it is defined in the CRD as required (<<attrName=>>) – see Required

Attributes and Elements for more details. When an empty field doesn’t have an override

tag name ending with an “=”, an element is generated in the form of an empty tag

(<tagName/>) unless it’s a trailing occurrence in an array, when it is not generated.

CDATA

CDATA sections can be generated in one of two ways. The first option is to use the

COBOL STRING command to string the CDATA literals directly into the CRD field around a

working storage variable:

 Eg: STRING "<![CDATA[" WS-FIELD "]]>" DELIMITED BY SIZE INTO CRD-FIELD.

Alternatively, the element can be defined to the CRD in a similar way to a mixed content

element and the CDATA literals moved into the CRD or predefined using the VALUE

clause:

Eg:

Fields in CRD Content

 03 TV-program.

 05 FILLER PIC X(9) VALUE "<![CDATA[". "<![CDATA[".

 05 prog-name

* <>

PIC X(16). “News & Weather ”

 05 FILLER PIC X(3) VALUE "]]>". "]]>"

Generates:

XML Document

 <TV-program><![CDATA[News & Weather]]></TV-program>

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 47

Maximum Document Size

The Redvers COBOL XML Interface is designed to process XML documents up to

99,999,999 bytes in length. As this limit exceeds the maximum field size for most

COBOL compilers, the picture clause for the XML-DOCUMENT parameter in linkage is

set to: PIC X(9999999).

If a document length greater than 9,999,999 bytes is required, and if the platform can

support a greater field length, the picture clause for the XML-DOCUMENT parameter in

linkage may need to be changed from: PIC X(9999999) to a longer picture definition (up

to 99,999,999 bytes).

Processing Instructions

It is not currently possible to generate processing instructions with this interface.

Comments

Comments can be coded into the start of the XML document using the XML-headers

User Maintained Variable or the DTD-headers User Maintained Variable – See User

Maintained Variables for details.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 48

User Maintained Variables

One of the features of RCFSTXML is that it’s delivered as COBOL source code. This

means certain parameters can be adjusted to suit the requirements of individual

applications. These parameters are called User Maintained Variables and can be found

within the first 200 lines of the interface subroutine source code, marked by a following

comment line beginning <UMV> with “*”s underlining the variable value.

NO PROCEDURE DIVISION CHANGES ARE EVER NECESSARY.

These variables are defaulted to values that should be adequate in most circumstances

while keeping storage requirements to a minimum.

Note: Changes to User Maintained Variables in accordance with these instructions will

not invalidate the warranty.

Program-Id

The program-id may be changed to suit site standards or to allow for multiple versions of

RCFSTXML and RCFSTCMP with different User Maintained Variables.

SELECT Statements

In RCFSTCMP, external file names and other information specified in the SELECT

statements can be changed to suit site standards and/or to satisfy platform compatibility

requirements.

File Definition Statements

In RCFSTCMP, the input and output FD statements may be changed to suit site standards

and/or to satisfy platform compatibility requirements. For example: “BLOCK CONTAINS 0

CHARACTERS” is frequently used on IBM platforms but not on HP platforms.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 49

Maximum-COBOL-record-length

The length of this field dictates the maximum COBOL-RECORD-LENGTH that can be

passed to RCFSTXML in one call. This length must be increased if more than 4096

characters of data are to be passed or it may be decreased if storage is limited.

XML-declaration and XML-headers

These text values provide the facility to control XML lines written at the start of the XML

document (including the declaration). For example they can be used to include external

DTD’s or schemas in the document. Any single quote marks (apostrophes) within the

texts are converted to double quote marks before being written. If populated, each text

string generates a line in the XML document.

Additional header lines may be added by coding further FILLER fields of 100 characters

containing text values, if the Number-of-XML-headers UMV is correspondingly increased.

Number-of-XML-headers

This value must be set to the number of XML-declaration and XML-header fields,

described above.

DTD-headers

These text values provide the facility to control XML lines written at the start of the DTD.

For example they can be used to declare entity references. Any single quote marks

(apostrophes) within the texts are converted to double quote marks before being written.

If populated, each text string generates a line in the XML document.

Additional DTD header lines may be added by coding further FILLER fields of 100

characters containing text values, if the Number-of-DTD-headers UMV is correspondingly

increased.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 50

Number-of-DTD-headers

This value must be set to the number of DTD-header fields, described above.

End-of-line-chtrs

In order to produce a more readable XML document some applications may wish to

include carriage return, line feed or new line characters at the end of each line in the XML

document. The characters in this field provide this facility when they are populated with

hexadecimal values other than space. A single occurrence of any non-space character in

this area will be appended to every logical line in the XML document.

Maximum-number-of-fields

The maximum number of discrete fields in the COBOL Record Definition (CRD) is

defaulted to 400 in both RCFSTCMP and RCFSTXML (fields using the OCCURS clause are

counted as one discrete field). If an application requires more than 400 fields in a single

CRD, the number in the OCCURS clause for this UMV can be increased. Similarly, if

storage is limited, this value can be decreased to save on storage requirements.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 51

RCFSTCMP Compile Errors

The following error messages may be displayed by RCFSTCMP in the event that the input

CRD could not be interpreted. If an error message is issued, no CRD object file will be

produced.

Error
Code

Error Text Reason

+0101 NO FIELDS IDENTIFIED

ON RECORD DEFINITION
No fields could be identified on the input CRD.

+0102 TOO MANY FIELDS ON

RECORD DEFINITION
The number of CRD fields exceeded the number

allowed in the compiler’s table. Increase this

value.

(See Maximum-number-of-fields in the User

Maintained Variables section.)

+0103 PROCESSING

EXCEPTION. PLEASE

CONTACT REDVERS

CONSULTING

There has been an internal logic error within the

program. Please contact your Redvers Consulting

account manager.

+0180 INVALID ACTIVATION

KEY. PLEASE PLACE

YOUR ACTIVATION KEY

IN THE LAST W.S.

FIELD

The Redvers COBOL XML Interface is supplied with

a 32 character activation key. Please edit the
RCFSTCMP source code and place this activation

key in the VALUE clause literal for the last field

definition in working storage. Then recompile.

+0190 30 DAY TRIAL PERIOD

EXPIRED OR CALL

LIMIT REACHED

The Redvers COBOL XML Interface can be

downloaded free of charge for a thirty day trial

period. The 30 days have now elapsed.

Please contact Redvers Consulting for an

additional thirty day trial or to arrange payment.

+0201 TOO MANY CHARACTERS

FOR LEVEL NUMBER
RCFSTCMP was expecting a COBOL level number

in the CRD but found a string of more than two

characters.

This message also points to the offending line

number within the CRD.

+0202 INVALID LEVEL NUMBER A COBOL level number that was not numeric or a

level number greater than 49 but not 88 was
found in the CRD.

This message also points to the offending line

number within the CRD.

+0203 ILLEGAL DATA CLAUSE

FOUND
An unsupported data clause was found in the field
definition.

See Clauses not Supported section.

This message also points to the offending line

number within the CRD.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 52

+0204 INVALID NUMBER OF

OCCURRENCES
An OCCURS clause was identified but it was not

followed by a valid integer of more than zero and

less than 9999.

This message also points to the offending line

number within the CRD.

+0205 INVALID PICTURE

DEFINITION
A PIC clause was identified but it was not followed

by a valid string of characters less than 30 in

length.

This message also points to the offending line
number within the CRD.

+0207 EXCEEDED MAXIMUM TAG

SIZE
An override tag name of more than 100 characters

was encountered. The Superfast level interface is

not designed to handle tag names of more than
100 characters. Please use one of the other

Redvers COBOL XML Interface levels.

This message also points to the offending line

number within the CRD.

+0208 INVALID FILL

CONSTANT

An invalid override fill constant was found in an
override tag name in the CRD. The value found

didn’t match one of the allowable fill constants:

“L” for low-values, “H” for high-values, “S” for

spaces, “Z” for zeroes and “Q” for quotes. (See
“Override Fill Constants” section in the RCFSTCOB

parser manual for details.)

This message also points to the offending line

number within the CRD file.

+0209 INCOMPLETE FILL

CONSTANT TAG

An override fill constant was found in an override

tag name in the CRD but the override was not

completed with the “>” character. (See “Override

Fill Constants” section in the RCFSTCOB parser

manual for details.)

This message also points to the offending line

number within the CRD file.

+0210 TAG DOES NOT START

WITH AN ALPHABETIC

CHARACTER

All XML tags must start with an alphabetic

character.

This message also points to the offending line

number within the CRD.

+0211 TAG NAME CONTAINS

INVALID XML

CHARACTERS

XML tag names are confined to using only

alphabetic, numeric, “-“, “_”, “:” or “.” characters.

This message also points to the offending line

number within the CRD.

+0214 ATTRIBUTES MAY NOT

BE GROUP LEVEL ITEMS
Attributes (tag names ending with “=”) must be

elementary data items.

This message also points to the offending line

number within the CRD.

http://www.redversconsulting.com/downloads/user_guides/RCFSTCOB_2.8_user.pdf
http://www.redversconsulting.com/downloads/user_guides/RCFSTCOB_2.8_user.pdf

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 53

+0215 ATTRIBUTE TAGS MAY

NOT OCCUR MORE THAN

ONCE

Attribute tags (those ending with “=”) may occur

only once in the parent/group level tag.

This message also points to the offending line

number within the CRD.

+0220 GROUP ITEM MUST NOT

HAVE A PICTURE
The field named in the message is at a higher
level than the next field in the CRD and is

therefore a group item. However, a picture clause

was encountered for this field.

This error would normally have been caught in the
compile stage.

+0221 ELEMENTARY FIELD

MUST HAVE A PICTURE
The field named is at an equal or lower level than

the next field in the CRD and is therefore an

elementary item. However, a picture clause was
not given for this field.

This error would normally have been caught in the

compile stage.

+0222 MORE THAN ONE ROOT

ELEMENT FOUND
The structure of the CRD may not have more than

one root level.

This message includes the offending field tag

name.

+0224 NO TAG NAME FOR THE

ROOT ELEMENT
A COBOL name or override tag name is required

for the root element of any XML document.

+0225 THE ROOT ELEMENT

CANNOT OCCUR MORE

THAN ONCE

The maximum OCCURS value for a root element is

1.

+0226 INVALID POSITION FOR

ATTRIBUTE
Attributes (tag names ending with a “=“) must be

coded within the group they relate to and they

must be the first fields in that group.

This message includes the offending attribute
name.

+0227 MISSING GROUP TAG

FOR ATTRIBUTE

ELEMENT

The group level data item must have a tag if it is

to hold an attribute (tag names ending with a “=“)

field.

This message includes the offending attribute

name.

+0230 ENCOUNTERED MULTIPLE

DIMENSION ARRAY
An OCCURS clause greater than 1 has been nested

within another OCCURS clause greater than 1. Only

single dimension arrays are currently supported.

To overcome this problem define a single

dimension array and make multiple calls to the

interface for each occurrence of the data item.

This message includes the offending field tag
name.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 54

RCFSTXML Feedback Messages

A zero FEEDBACK-CODE indicates processing has completed successfully and that

FEEDBACK-TEXT contains diagnostic information for the first, subsequent or final call.

The +100 series indicate fatal processing errors at file or parameter level.

The +300 series indicate fatal errors encountered after the first call.

FEEDBACK

-CODE
FEEDBACK-TEXT

+0000 COMPLETED FIRST CALL. CRD FIELDS PARSED:9999 RECORD LENGTH:99999

or

COMPLETED CALL NO.: 99999999 XML LINES GENERATED SO FAR:99999999

or

COMPLETED LAST CALL:99999999 TOTAL XML LINES GENERATED:99999999

FEEDBACK

-CODE
FEEDBACK-TEXT Reason

+0101 NO FIELDS IDENTIFIED

ON RECORD DEFINITION
The CRD-RECORD-COUNT parameter was zero.

Probable causes are that the previous

recompilation by RCFSTCMP failed in some way or

the calling application hasn’t loaded the compiled
CRD in CRD-OBJECT-AREA.

+0103 PROCESSING

EXCEPTION. PLEASE

CONTACT REDVERS

CONSULTING

There has been an internal logic error within the

program. Please contact your Redvers Consulting

account manager.

+0104 LENGTH OF RECORD

DEFINITION IS > MAX

COBOL RECORD

The total logical length of CRD-OBJECT-AREA,

exceeds the size of the maximum COBOL-
RECORD permitted.

(See Maximum-COBOL-record-length in the User

Maintained Variables section.)

+0110 RECORD DEFINITION /

LINKAGE MISMATCH
The logical length of CRD-OBJECT-AREA was not
the same as COBOL-RECORD-LENGTH passed in

linkage.

Probable causes are that the CRD needs to be

recompiled by RCFSTCMP, the CRD has been
changed but the calling program was not

recompiled or that the layout used in the calling

program is not the one in CRD-OBJECT-AREA.

+0180 INVALID ACTIVATION

KEY. PLEASE PLACE

YOUR ACTIVATION KEY

IN THE LAST W.S.

FIELD

The Redvers COBOL XML Interface is supplied with
a 32 character activation key. Please edit the

RCFSTXML source code and place this activation

key in the VALUE clause literal for the last field

definition in working storage. Then recompile.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 55

+0190 30 DAY TRIAL PERIOD

EXPIRED OR CALL

LIMIT REACHED

The Redvers COBOL XML Interface can be

downloaded free of charge for a thirty day trial

period. This free version may be called up to 100

times in a single application execution. Either the

thirty days have now elapsed or your application is
trying to call RCFSTXML more than 100 times.

Please contact Redvers Consulting for an

additional thirty day trial or to arrange payment.

+0301 CALL SEQUENCE ERROR A call has been made to the interface after
processing has completed.

Likely explanations are that FEEDBACK-CODE

was not checked after a previous unsuccessful call

or that the calling program has previously
completed the XML document by executing an

end-of-run call (high-values in COBOL-RECORD).

+0302 PARAMETERS MUST NOT

CHANGE AFTER INITIAL

CALL

One or more of the input calling parameters was

found to have changed after the first call to the

interface.

Likely explanations are that the application has

inadvertently overwritten one or more of the

working storage fields used in the call to the

interface or the application is attempting to
generate more than one XML document without

first issuing the final high-values call.

+0310 ATTEMPTED TO

GENERATE MULTIPLE

ROOT DOCUMENT

When generating repeating information the

program found that the lowest group level
common to the repeating information (the Point Of

Change) was the root element and therefore

cannot be repeated.

To avoid this, code the root element as the only
01 level in the CRD followed by a single 02 level

so that repeating information can be generated

under multiple 02 levels. If you don’t want to

pass this additional level to XML call it FILLER.

+0330 XML DOCUMENT LENGTH

EXCEEDS DOCUMENT

AREA

When building the XML document RCFSTXML has

attempted to address beyond the length of the

XML-DOCUMENT area in the calling program.

Ensure that XML-DOCUMENT-LENGTH contains

the full length of the XML-DOCUMENT area in the

calling program. Otherwise the size of XML-

DOCUMENT must be increased in the calling
program.

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 56

Index

A

account manager, 8, 20, 45

activation key, 7

apostrophes, 7, 49

arrays, 14, 25, 26

ASCII, 13

attributes, 10, 18

B

base64, 13

Binary Fields, 13

binary zeroes, 40

BLANK WHEN ZERO, 14

BLOCK CONTAINS, 48

C

Calling, 32

Calls, 34

carriage return, 50

CDATA, 46

Character Range, 45

Character References, 45

Cloaking Device, 7

COBOL Record, 32

COBOL Record Definition, 9

COBOL record length, 49

comment, 23

Comments, 47

compile, 7

Compile Errors, 51

Contact, 8

copybook, 21

CRD Object Area, 32

CRD Record Count, 32

D

dimensions, 26

Document, 32

Document Length, 33, 34

Document Type Definition, 24, 34

double quotes, 7

DTD, 9, 19, 20, 24, 34, 49

DTD-headers, 47, 49

dummy fields, 28, 29

duplicate records, 29

E

EBCDIC, 13

empty elements, 9, 14

empty fields, 9, 19, 20, 46

end tags, 9

End-of-line-chtrs, 50

entity declarations, 45

execution time, 6

Extensible Markup Language, 5, 45

external file names, 48

F

fatal, 54

FD, 48

Feedback Code, 33, 34, 54

Feedback Messages, 54

Feedback Text, 33, 34, 54

field editing, 18

field names, 9

formatting, 18

H

hash total, 43

hierarchy, 15, 28

HIGH-VALUES, 34

I

imbedded sign, 12, 13

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 57

include, 21

install, 7

J

JUSTIFIED RIGHT, 14

L

line feed, 50

low-values, 28, 40, 45

M

many-to-many, 41

Maximum Document Size, 47

Maximum-COBOL-record-length, 49

Maximum-number-of-fields, 50

minOccurs, 20, 46

mixed content, 16

N

namespaces, 11

new line, 50

non-tagged, 17

non-tagged fields, 16, 18

non-tagged groups, 30

null, 45

Number-of-DTD-headers, 50

Number-of-XML-headers, 49

O

OCCURS, 14, 20, 25

OCCURS DEPENDING ON, 14

one-to-many, 41

optional, 14

optional elements, 20

Orphan Repeats, 30

override tag names, 10, 11, 16, 18, 19, 22

P

Packed Fields, 13

Parameters, 32

parent, 30

picture, 12, 19

Point of Change, 26, 28

Processing Instructions, 47

program-id, 35, 48

Q

quote, 49

R

RCCRDIN, 7

RCCRDOBJ, 7

RCFSTCMP, 5, 6, 7, 32, 48, 51

RCFSTCOB, 5

RCFXCALL, 7

Record Length, 32, 34

REDEFINES, 14

repeating groups, 25

required, 46

required attributes, 19

required elements, 19

reserved words, 10

root element, 15

S

Sample Program, 35

schema, 9, 19, 20

SELECT, 48

single quotes, 7

SOAP, 11

speech marks, 7

start tags, 9

STRING, 46

structure, 15

Structure Break, 39

SYNC, 14

RCFSTXML 2.9 User Guide

Redvers Consulting Ltd Page 58

SYNCHRONIZED, 14

T

tools, 9

totals, 39, 43

U

Unicode, 45

User Maintained Variables, 7, 23, 24, 48

W

warranty, 48

WORKING-STORAGE, 7, 23

World Wide Web Consortium (W3C), 5, 45

X

XML declaration, 7, 23, 49

XML-headers, 24, 47, 49

Redvers Consulting Ltd
44 Broadway, London E15 1XH, UK
http://www.redversconsulting.com/

	Preface
	Overview
	Installation
	Coding the COBOL Record Definition
	Field Names
	Default Tag Names
	Override Tag Names
	XML Attributes
	XML Namespaces and SOAP

	PICTURE Clause
	Binary / Packed Fields

	Other Clauses
	BLANK WHEN ZERO
	JUSTIFIED RIGHT
	OCCURS
	Clauses Not Supported

	Structure
	Mixed Content Elements
	Non-tagged group level fields

	Advanced Techniques
	Formatting
	Required Attributes and Elements
	Optional Elements
	Excluded Elements
	Multiple XML Elements in One Field
	XML Declaration Override
	Document Type Definition Override

	Repeating Groups
	Using OCCURS
	Using Repeated Calls
	Controlling the Point of Change
	Orphan Repeats

	Calling RCFSTXML
	Parameters
	CRD-OBJECT-AREA (input)
	CRD-RECORD-COUNT (input)
	COBOL-RECORD (input)
	COBOL-RECORD-LENGTH (input)
	XML-DOCUMENT (output)
	XML-DOCUMENT-LENGTH (input & output)
	FEEDBACK-CODE (output)
	FEEDBACK-TEXT (output)

	Calls to RCFSTXML
	The First Call
	Subsequent Calls
	The Last Call

	Sample Program Calling RCFSTXML

	Structure Break
	Normal Operation
	What is a Structure Break?
	How to code a Structure Break
	When to use a Structure Break

	Data Integrity
	Character Range
	Character References
	Entity References
	Empty Fields
	CDATA
	Maximum Document Size
	Processing Instructions
	Comments

	User Maintained Variables
	Program-Id
	SELECT Statements
	File Definition Statements
	Maximum-COBOL-record-length
	XML-declaration and XML-headers
	Number-of-XML-headers
	DTD-headers
	Number-of-DTD-headers
	End-of-line-chtrs
	Maximum-number-of-fields

	RCFSTCMP Compile Errors
	RCFSTXML Feedback Messages
	Index

