

 RReeddvveerrss CCoonnssuullttiinngg LLttdd

Redvers COBOL XML
Interface

User Guide

Superfast XML Parser
RCFSTCOB Version 2.7

RCFSTCOB User Guide

Contents

Preface ... 5
Overview .. 6
Installation.. 7

RCFSTCMP.. 7
RCFSTCOB.. 8

Coding the COBOL Record Definition ... 9
Field Names.. 9

Default Tag Names ... 9
Override Tag Names...10
XML Attributes ..10
XML Namespaces and SOAP ..11

Picture Clause ..12
Numeric Fields...12
Alphabetic, Alphanumeric and Numeric Edited Fields13
Binary / Packed Fields ..14

Other Clauses ..15
BLANK WHEN ZERO ...15
JUSTIFIED RIGHT ..15
OCCURS...15
Clauses Not Supported ...15

Structure...16
Mixed Content Elements ...17

Advanced Techniques..18
Override Fill Constants ...18
Excluded Elements...19

Repeating Groups..20
Using OCCURS ...20
Using Repeated Calls ..21
Orphan Repeats ...23

Optimizing Performance ...24
Unit of Data Transfer ..24

Calling RCFSTCOB ...26
Parameters..26

CRD-OBJECT-AREA (input)..26
CRD-RECORD-COUNT (input) ..26
XML-DOCUMENT (input) ...26
XML-DOCUMENT-LENGTH (input & output) ..26

www.redversconsulting.com Page 2

RCFSTCOB User Guide

COBOL-RECORD (output)..26
COBOL-RECORD-LENGTH (input) ...27
FEEDBACK-CODE (output) ..27
FEEDBACK-TEXT (output) ...27

Calls to RCFSTCOB ...28
The First Call...28
Subsequent Calls ...28
The Last Call ...29

Sample Program Calling RCFSTCOB...30
Selecting XML elements ...34

SELECT Statement Format...34
SELECT Statement Syntax ...34
SELECT Statement Use..35
SELECT Statement Example...37

Alternative Namespace Prefixes...38
The Instance Document Root ...38
Performing a Pre-parse..39
The xmlnamespaces Element ...39

xmlnamespaces Example ..40
Data Integrity...41

Character Range ..41
Character References ..41
Entity References ...41
CDATA..42
Maximum Document Size ..42
Processing Instructions..42
Comments...42
White Space ..42

User Maintained Variables ..43
Program-ID ...43
SELECT Statements ..43
File Definition Statements..43
Work-area-size ..44
Maximum-number-of-entities ...44
Maximum-entity-argument ..44
Maximum-entity-length ...44
Maximum-number-of-fields..45

RCFSTCMP Compile Errors ..46
RCFSTCOB Feedback Messages ...49

www.redversconsulting.com Page 3

RCFSTCOB User Guide

Index ..52

www.redversconsulting.com Page 4

RCFSTCOB User Guide

Preface

This document describes the installation and operation of the Redvers COBOL XML

Interface programs RCFSTCMP and RCFSTCOB. It is designed for use by Information

Technology departments familiar with the COBOL and XML computer languages.

Program RCFSTCMP is a batch compile process that reads a COBOL Record Definition

(CRD) in order to produce a CRD object file for use in Redvers COBOL XML Interface

programs RCFSTXML and RCFSTCOB.

Program RCFSTCOB is a COBOL subroutine that returns the data in XML documents to

COBOL applications in COBOL form. Output from RCFSTCMP provides RCFSTCOB with all

the information it needs to read XML documents specific to an application RCFSTCOB

does not attempt to validate XML documents but will return an error if well-formed XML

syntax rules are broken.

RCFSTCOB is the counterpart to RCFSTXML which uses a similar process to generate XML

documents from a COBOL record.

This User Guide can be found on the internet at:

http://www.redversconsulting.com/downloads/user_guides/RCFSTCOB_2.7_user.pdf.

Copyright 2010 Redvers Consulting Ltd.

www.redversconsulting.com Page 5

http://www.redversconsulting.com/downloads/user_guides/RCFSTCOB_2.7_user.pdf

RCFSTCOB User Guide

Overview

RCFSTCOB is a COBOL subroutine that is compiled and linked into application programs

in order to parse well-formed XML documents. This particular interface level was built for

large scale applications requiring fast and efficient XML parsing. In order to achieve

maximum speed and efficiency, the interpretation of the COBOL Record Definition (CRD)

has been passed to an off-line batch compile process (RCFSTCMP).

Central to the operation of the interface is the COBOL Record Definition (CRD). This

definition (usually a COBOL copybook member) is included in the application program

source code where it describes the format of the COBOL data to be returned. In

addition, the CRD source is read by RCFSTCMP in a one-off batch process which creates a

CRD object file containing the raw field positions, lengths, types etc. At execution time,

application programs load this CRD object file into working storage and then pass it to

RCFSTCOB with the XML document in a CALL statement.

XML
DOCUMENT CRD

RCFSTCMP

COBOL
APPLICATION COBOL

DATA
CRD

OBJECT

LINKAGE

RCFSTCOB

Compilation time

One-off batch process

Execution time

www.redversconsulting.com Page 6

RCFSTCOB User Guide

Installation

RCFSTCOB and RCFSTCMP are self-contained source programs that require no copybooks

or objects. Before the product was despatched, the source code was passed through the

Redvers COBOL Cloaking Device which removes the intellectual property within the

source code without changing the logic.

To install RCFSTCOB and RCFSTCMP, copy the “cloaked” source code into your source

code library and paste the activation key (sent in an email when ordering/downloading)

over the question marks in the last VALUE clause in working storage. The programs can

then be compiled and linked using your standard COBOL compiler.

Various parameters including the program-id are defined as User Maintained Variables in

the source code so that they may be set to alternative values if desired. See User

Maintained Variables for details.

If your site uses single quotes (apostrophes) rather than double quotes (speech marks)

to delimit literals, a global change of all double quotes to single quotes can be made.

If you should encounter any problems during installation, please contact your account

manager or use our “Contact” facility at: http://www.redversconsulting.com/contact.php.

RCFSTCMP

RCFSTCMP is the CRD compiler program required to pre-process CRD’s used by the

Redvers COBOL XML Interface (Superfast level).

To install, copy the RCFSTCMP source into your source code library and compile/link

using your standard batch COBOL compiler.

To run, a batch compilation type job will needed with the following file attributes:

• RCCRDIN – (input) fixed length 80 byte sequential file containing COBOL source
code records of working storage field definitions (the CRD).

• RCCRDOBJ – (output) fixed length 132 byte sequential file with one record
equating to each field on the input source code.

www.redversconsulting.com Page 7

http://www.redversconsulting.com/cloaking_device.php
http://www.redversconsulting.com/contact.php

RCFSTCOB User Guide

• File handling for output from DISPLAY statements, so that record counts or
compilation errors can be viewed.

RCFSTCOB

RCFSTCOB is the XML parser subroutine component of the Redvers COBOL XML Interface

(Superfast level).

To install, copy the source into your source code library and compile using your standard

subroutine COBOL compiler.

To run, link RCFSTCOB into your application program and issue a CALL to RCFSTCOB

passing the appropriate CRD object file created by RCFSTCMP and the XML document.

See Calling RCFSTCOB for CALL parameter details.

www.redversconsulting.com Page 8

RCFSTCOB User Guide

Coding the COBOL Record Definition
The COBOL Record Definition (CRD) defines the layout of the COBOL record passed to

the interface as well as the tags, format and structure of the XML document to be

parsed. Redvers Consulting offers two free tools to assist in drafting a CRD. These tools

require either an XML W3C schema or Document Type Definition (DTD) as input and can

be provided by your account manager or downloaded from the Partners area of our web

site.

Field Names

Fields in the CRD are populated with the data from attributes and elements in the XML

document when their field names match XML tag names. When a group level field name

on the CRD matches an XML tag, all subordinate fields in the group are initialized. Non-

matching fields on the CRD with no matching parents will remain unchanged and

elements in the XML document without a match will be ignored.

Default Tag Names

The COBOL field names in the CRD are the default names used to match XML start and

end tags.

Eg:

XML Document

 <TV-program>Sunday Night Live</TV-program>

 Results in:

Field in CRD Populated with

 03 TV-program PIC X(20). “Sunday Night Live ”

Note: XML tag names are case sensitive so upper/lower case settings in the field name
must be exactly the same as those of the tag name in order to achieve a match.

www.redversconsulting.com Page 9

http://www.redversconsulting.com/partners.php

RCFSTCOB User Guide

Override Tag Names

XML frequently contains long tag names or names containing non-standard COBOL

characters. In order to match with these tags, an override name is coded within “<“ and

“>“ in the comment line, or lines, immediately following the field definition.

Eg:

XML Document

 <The_next_program_on_Channel-5_>Sunday Night Live</The_next_program_on_Channel-5_>

 Results in:

Field in CRD Populated with

 03 TV-PROGRAM PIC X(20).
* <The_next_program_on_
* Channel-5_>

“Sunday Night Live ”

XML Attributes

XML attributes can be matched to COBOL fields by coding an “=” at the end of the

override tag name.

Eg:

XML Document

 <TV-program time=”10:00”>
 <prog-name>Sunday Night Live</prog-name>
 </TV-program>

 Results in:

Fields in CRD Populated with

 03 TV-program.

 05 prog-time
* <time=>

PIC X(5). “10:00”

 05 prog-name PIC X(20). “Sunday Night Live ”

www.redversconsulting.com Page 10

RCFSTCOB User Guide

XML Namespaces and SOAP

The Redvers COBOL XML Interface supports XML namespaces and Simple Object Access

Protocol (SOAP) by loading data from XML elements when their tag names (including

their prefixes) match override tag names in the CRD.

Eg:

XML Document

 < SOAP-ENV:Envelope
 xmlns:SOAP-ENV=” http://schemas.xmlsoap.org/soap”
 xmlns:uk=”http://www.greenwichmeantime.co.uk”
 xmlns:us=”http://www.easternstandardtime.com”>
 <SOAP-ENV:Body>
 <prog-name>Sunday Night Live</prog-name>
 <uk:time>10:00</uk:time>
 <us:time>05:00</us:time>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

 Results in:

Fields in CRD Populated with

 03 TV-program.

 05 SOAP-NAMESP
* <xmlns:SOAP-ENV=>

PIC X(34). “http://schemas.xmlsoap.org/soap ”

 05 US-NAMESPACE
* <xmlns:us=>

PIC X(34). “http://www.easternstandardtime.com”

 05 prog-name PIC X(20). “Sunday Night Live ”

 05 PROG-UK-TIME
* <uk:time>

PIC X(05). “10:00”

 05 PROG-US-TIME
* <us:time>

PIC X(05). “05:00”

Note: The xmlns:uk namespace declaration was deliberately left out of the CRD to show
that the interface does not need namespace declarations to parse namespace tag names.

From release 2.6, the interface also stores all the namespace declarations at the start of

the instance document. If a prefix/tag match cannot be made directly with a field

definition in the CRD, the interface will attempt to match the tag using any other prefix

declared with the same URI.

From release 2.7, additional namespace declarations, not even defined in the instance

document can be stored before parsing commences - See Alternative Namespace

Prefixes for further details.

www.redversconsulting.com Page 11

RCFSTCOB User Guide

Picture Clause

Numeric Fields

Fields defined in the CRD with a display (zoned decimal) numeric picture clause, are

populated as if they were the receiving operand of a COBOL MOVE statement after any

non-numeric characters have been removed and the decimal point aligned.

Eg:

XML Document

 <prog-date>31/12/2002</prog-date>
 <prog-duration>.333</prog-duration>
 <prog-cost>$2,500,000.00DB</prog-cost>

 Results in:

Fields in CRD Populated with

 03 prog-date PIC 9(8). 31122002

 03 prog-duration PIC 999V999. 000333

 03 prog-cost PIC S9(9)V99. 0025000000}

www.redversconsulting.com Page 12

RCFSTCOB User Guide

Alphabetic, Alphanumeric and Numeric Edited Fields

Fields defined in the CRD as alphabetic, alphanumeric or numeric edited, are populated

as if they were the receiving operand of a COBOL alphanumeric MOVE statement with no

prior editing except that numeric edited fields are moved right justified.

Eg:

XML Document

 <prog-name> Sunday Night Live </prog-name>
 <prog-time>10:00</prog-time>
 <prog-duration>.333</prog-duration>
 <prog-cost>$2,500,000.00DB</prog-cost>

 Results in:

Fields in CRD Populated with

 03 prog-name PIC X(20). “ Sunday Night Live ”

 03 prog-time PIC X(5). “10:00”

 03 prog-duration PIC ZZZ.999. “ .333”

 03 prog-cost PIC Z(11)9.99-. “ $2,500,000.00DB”

Note: In the example above, prog-cost is not loaded with formatting consistent with
the CRD. This is because formatting cannot convert from one edited format directly to
another. If another edited format is required, the field must be first loaded as a display
numeric then moved to the new edited format.

www.redversconsulting.com Page 13

RCFSTCOB User Guide

Binary / Packed Fields

Due to the fact that XML is a character based language, binary and packed decimal

numeric data cannot be safely represented within element tags. For this reason a format

known as base64 is used. This format produces a character range of “A” through “Z”,

“a” through “z”, “0” through “9”, “+”, “/” and “=“. This subset of ISO 646 characters is

represented identically in all versions of ASCII and EBCDIC which therefore ensures a

smooth translation from ASCII to EBCDIC and vice-versa.

Unfortunately there is not yet any standard way to indicate that XML elements contain

base64 characters, so the interface assumes that if a field is defined as binary or packed

decimal in the CRD then it is to convert the data in the matching element from base64 to

binary or packed decimal (depending on the USAGE clause).

Eg:

XML Document

 <prog-rating>AI8=</prog-rating>
 <prog-revenue>B1vNFQ==</prog-revenue >

 Results in:

Fields in CRD Populated with

 03 prog-rating PIC 99 PACKED-DECIMAL. 8

 03 prog-revenue PIC S9(7)V99 BINARY. 1234567.89

Note: In order to load a numeric XML element into a binary or packed COBOL field, you
must first parse it into a display numeric CRD field, then use a COBOL MOVE into a field
defined in the calling program as binary or packed.

www.redversconsulting.com Page 14

RCFSTCOB User Guide

Other Clauses

BLANK WHEN ZERO

If a field is defined in the CRD as numeric but the XML element is empty, the field will be

populated with spaces otherwise it will be populated as a numeric field.

JUSTIFIED RIGHT

As in COBOL, this clause will cause the field to be populated from the rightmost position

for alphabetic and alphanumeric cases.

OCCURS

Single dimension arrays can be defined in the CRD using the OCCURS clause in order to

load multiple occurrences of matching XML elements in a single call. The clause can be

used at group or elementary level. If the XML document contains more than one

dimension of repeating data, this is handled by issuing multiple calls – see Repeating

Groups for details. This approach allows the interface to process an unlimited number of

occurrences in unlimited dimensions (which is the case for XML documents) using only a

small amount of storage.

Clauses Not Supported

The following data definition clauses are not currently supported in the CRD:

OCCURS DEPENDING ON

REDEFINES

SYNCHRONIZED/SYNC

Symbol “P” in the picture clause

www.redversconsulting.com Page 15

RCFSTCOB User Guide

Structure

Just as COBOL has a hierarchical structure in the relationship between the various fields

in a data record, XML has hierarchy between parent and child elements in a document.

As stated previously, fields in the CRD are populated from XML elements based on

matching CRD field names with XML tag names. When a parent XML tag matches a

previously unpopulated CRD group level, the group level area is initialised and

subsequent elementary fields are populated from matching child XML elements. XML

data cannot be loaded directly into COBOL fields at group level because of the free-

format nature of XML. The exception to this rule is when mixed content elements are

encountered - see Mixed Content Elements later in this section for details.

Matching can take place in any sequence but group and elementary matches should

occur in accordance with their hierarchy within the CRD structure, otherwise the

application program will need to make additional calls to the interface in order to return

all the XML elements.

Eg:

XML Document

 <TV-listings>
 <channel>
 <channel-number>05</channel-number>
 <TV-program>
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 <prog-rating>8</prog-rating>
 </TV-program>
 </channel>
 <broadcast-date>11/12/2002</broadcast-date>
 </TV-listings>

 Results in:

Fields in CRD Populated with

 01 TV-LISTINGS.

 03 broadcast-date PIC 9(8). 11122002

 03 producers-cut PIC 9(9)V99. 1000000.00

 03 channel-number PIC 99. 5

 03 TV-program.

 05 prog-time PIC X(05). “10:00”

 05 prog-review PIC X(200). Spaces

 05 prog-name PIC X(20). “Sunday Night Live ”

www.redversconsulting.com Page 16

RCFSTCOB User Guide

In the previous example, no match is made for <TV-listings> because XML tags are case

sensitive; <channel> is ignored because it is not on the CRD; <channel-number> is

matched and populated; <TV-program> is matched at group level and the group area is

initialized; <prog-name> is matched and populated; <prog-time> is matched and

populated; <prog-rating> is ignored because it is not on the CRD; <broadcast-date> is

matched and populated; the CRD field producers-cut remains unchanged from its

original value.

Mixed Content Elements

When an XML element is a mixed content element (i.e. it contains data and other

subordinate elements), it needs to be logically partitioned across a COBOL group

definition. This type of translation is achieved using a group level data name with

subordinate non-tagged fields. Non-tagged fields are either defined using FILLER or a

null override name in the CRD.

FILLER/null fields are populated according to their position within the matching group. If

they are not required by the calling application they need not be coded.

Eg:

XML Document

 <TV-program>Sunday Night Live
 <prog-time>10:00</prog-time> tomorrow
 </TV-program>

 Results in:

Fields in CRD Populated with

 03 TV-program.

 05 FILLER PIC X(20). “Sunday Night Live ”

 05 prog-time PIC X(5). “10:00”

 05 END-TEXT
* <>

PIC X(10). “ tomorrow ”

www.redversconsulting.com Page 17

RCFSTCOB User Guide

Advanced Techniques

Override Fill Constants

As stated at the start of the Field Names section, CRD field groups are initialized when

their group level field name (or override tag name) matches an XML element tag name.

This initialization defaults to the setting of each field in the group as if the group level

field was the subject of a COBOL INITIALIZE statement. Although this may be the

desired effect in most cases, it does produce a problem if a distinction between an empty

XML element verses an absent XML element is required.

An example of such a situation might be an application that receives a file of database

updates in the form of an XML document. If a television critic no longer wished to

comment on a TV program, the application would need to distinguish between an

intentional update that places spaces in the program review field compared with no

update to the program review field but a field-name/tag-name match at the group level.

In order to solve this dilemma, release 2.5 introduces the facility to override the default

initialization so that fields subjected to a field-name/tag-name match at group/parent

level can be filled with a figurative constant of SPACES, ZEROES, QUOTES, LOW-VALUES

or HIGH-VALUES. The override is applied using the CRD override tag name facility by

placing a forward slash (“/”) followed by the first letter of the figurative constant (upper

or lower case) to the right of the override tag name. If no override tag name is required,

the fill constant can be applied in isolation by coding “</Z>”, “</s>” etc.

Eg:

XML Document

 <TV-program>
 <prog-name>Sunday Night Live</prog-name>
 <review/>
 </TV-program>

 Results in:

Fields in CRD Populated with

 03 TV-program.

 05 prog-name
* </z>

PIC X(20). “Sunday Night Live ”

 05 PROG-TIME
* <time/L>

PIC X(05). Low-values

 05 PROG-REVIEW
* <review/h>

PIC X(200). Spaces

www.redversconsulting.com Page 18

RCFSTCOB User Guide

In the previous example, when <TV-program> is matched to the TV-program CRD

group, prog-name is initialized to zeroes, PROG-TIME is initialized to low-values and

PROG-REVIEW is initialized to high-values. Then, “Sunday Night Live ” is moved to

prog-name and spaces are moved to PROG-REVIEW because of the empty <review>

element. When processing is complete, the resulting CRD indicates that while there were

updates for prog-name and PROG-REVIEW, no updates were present for PROG-TIME

because it remains set to its override fill constant of low-values.

If an override fill constant is coded in a CRD that is also used by a Redvers COBOL XML

generator module, the “/” character and any subsequent character will be ignored.

Note: If an override fill constant is coded at group level it will apply to all subordinate
fields and field groups unless superseded by a lower level override fill constant.

Excluded Elements

A COBOL Record Definition (CRD), used by the Redvers COBOL XML Interface is

frequently in the form of a COBOL “copybook” or “include” and therefore may be used by

an application for a variety of purposes, outside the calling of the Redvers XML parser

routine. As a result, there may be fields in the CRD which relate to application processes

outside the Redvers COBOL XML Interface and therefore should not be populated from

XML data content.

From release 2.7, this issue has been addressed by providing a new type of CRD override

tag name, within parentheses, in the form: <(tagname)>. Under these circumstances,

the entry is still defined as a COBOL field and can still be used by the application for

other purposes but no XML data will be moved to this field. In effect, the tag name

specified becomes useful for documentation purposes only.

An example of an excluded field in a CRD can be seen below:

Field in the CRD

 03 TV-PROGRAM
* <(Exclude_Me)>

PIC X(20).

Note: Excluded fields must still be included in the total length of the CRD when
populating the COBOL-RECORD-LENGTH parameter, otherwise a FEEDBACK-CODE of
+0110 will be returned.

www.redversconsulting.com Page 19

RCFSTCOB User Guide

Repeating Groups

In business applications it would be rare for an XML document to contain only a single

set of information details. Elements or element groups are often repeated to reflect

multiple sets and subsets of information within the XML document. In order to feed this

repeating data to a calling application, single dimension arrays can be defined using the

COBOL OCCURS clause. Alternatively, if the number of occurrences is unknown or more

than one dimension of repeating data is possible, multiple calls can be made to

RCFSTCOB which returns the next logical set of repeated data and any related structure.

Using OCCURS

Occurrences of a group or elementary field in the CRD are populated for all matching

repeated XML elements. If XML elements repeat more times than will fit in the array

these elements will be returned in subsequent calls. If XML elements repeat fewer times

than the number of occurrences in the OCCURS clause, surplus occurrences will remain

unchanged, therefore it is important to achieve a match at the group level first to

initialize the table.

Eg:

XML Document

 <channel>
 <channel-number>05</channel-number>
 <TV-program>
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 </TV-program>
 <TV-program>
 <prog-name>News</prog-name>
 <prog-time>11:30</prog-time>
 </TV-program>
 <TV-program/>
 <TV-program>
 <prog-name>Weather</prog-name>
 <prog-time>11:55</prog-time>
 </TV-program>
 </channel>

www.redversconsulting.com Page 20

RCFSTCOB User Guide

 Results in:

Fields in CRD Occurrence Populated with

 03 CHANNEL.

 05 channel-number PIC 99. 5

 05 TV-program OCCURS 5. 1

 07 prog-name PIC X(17). 1 “Sunday Night Live”

 07 prog-time PIC X(5). 1 “10:00”

 05 TV-program OCCURS 5. 2

 07 prog-name PIC X(17). 2 “News ”

 07 prog-time PIC X(5). 2 “11:30”

 05 TV-program OCCURS 5. 3

 07 prog-name PIC X(17). 3 spaces

 07 prog-time PIC X(5). 3 spaces

 05 TV-program OCCURS 5. 4

 07 prog-name PIC X(17). 4 “Weather ”

 07 prog-time PIC X(5). 4 “11:55”

 05 TV-program OCCURS 5. 5

 07 prog-name PIC X(17). 5 spaces

 07 prog-time PIC X(5). 5 spaces

Note: As CHANNEL was coded in capitals, the fifth occurrence of prog-name and prog-
time was initialized only when the group level <TV-program> matched with TV-program
in the CRD. The third occurrence of prog-name and prog-time was initialized when
the group level <TV-program> matched with TV-program and again when the empty
<TV-program/> element was matched.

Using Repeated Calls

An unlimited number of occurrences and dimensions (which is the case for XML

documents) can be parsed most efficiently by the use of repeated calls to the interface

module. In the first call, a scan is made of the XML document and all CRD fields with

matching element names are populated. If the number of matched XML elements

exceeds those on the CRD, excess elements overflow into the work area. When

subsequent calls are made, the elements in the work area are loaded into the CRD in a

sequence consistent with their position in the XML document hierarchy.

The example below parses a two dimensional array from XML for multiple <TV-program>

elements within multiple <channel> elements using repeated calls and a smaller CRD.

www.redversconsulting.com Page 21

RCFSTCOB User Guide

Eg:

XML Document

 <channel>
 <channel-number>05</channel-number>
 <TV-program>
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 </TV-program>
 <TV-program>
 <prog-name>News</prog-name>
 <prog-time>11:30</prog-time>
 </TV-program>
 </channel>
 <channel>
 <channel-number>06</channel-number>
 <TV-program>
 <prog-name>Westenders</prog-name>
 <prog-time>08:00</prog-time>
 </TV-program>
 </channel>

After first call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program.

 07 prog-name PIC X(20). “Sunday Night Live ”

 07 prog-time PIC X(5). “10:00”

After second call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 5

 05 TV-program.

 07 prog-name PIC X(20). “News ”

 07 prog-time PIC X(5). “11:30”

After third call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 6

 05 TV-program.

 07 prog-name PIC X(20). “Westenders ”

 07 prog-time PIC X(5). “08:00”

www.redversconsulting.com Page 22

RCFSTCOB User Guide

Orphan Repeats

In the following example <prog-name> and <prog-time> are repeated without the

presence of a parent element for each occurrence. This configuration can be parsed by

RCFSTCOB but the XML document must be responsible for keeping <prog-name> and

<prog-time> in step with each other by providing empty elements for any unpopulated

fields. If this is not done, data from unrelated elements could be returned as a related

set.

Eg:

XML Document

 <channel>
 <channel-number>05</channel-number>
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 <prog-name>News</prog-name>
 <prog-time/>
 <prog-name>Weather</prog-name>
 <prog-time>11:55</prog-time>
 </channel>

After first call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 05

 05 prog-name PIC X(20). “Sunday Night Live ”

 05 prog-time PIC X(5). “10:00”

After second call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 05

 05 prog-name PIC X(20). “News ”

 05 prog-time PIC X(5). spaces

After third call:

Fields in CRD Populated with

 03 channel.

 05 channel-number PIC 99. 05

 05 prog-name PIC X(20). “Weather ”

 05 prog-time PIC X(5). “11:55”

www.redversconsulting.com Page 23

RCFSTCOB User Guide

Optimizing Performance

When RCFSTCOB converts XML to COBOL format, it uses the work area to store repeated

occurrences of XML elements. For most applications, the size of the XML document will

be relatively small and so the work area size will not be an issue. However, for large

XML documents it may be wise to control the amount of data initially read from the XML

input. This can be done by manipulating the high level field names in the CRD in order

to produce a smaller Unit of Data Transfer.

Unit of Data Transfer

When RCFSTCOB begins reading an XML document it searches for the first field/tag name

match on the CRD. Once found, the entire content of the matched element becomes the

first Unit of Data Transfer (UDT) which is read from the XML document. Initial

occurrences of matched child elements are placed directly into the CRD fields while any

repeated elements are stored in the work area.

In subsequent calls, the stored elements are scanned in order to return the repeated

data in a logical sequence. Once all elements have been loaded, further calls initiate

processing for the next UDT.

If a UDT is the result of a field/tag match at document root level then all duplicated

elements in the XML document will be stored and repeatedly processed. However, if the

UDT consists of only one or two elements, many more calls to RCFSTCOB will be required

in order to populate all fields in the CRD.

For best results the CRD should be designed so that the UDT is at CRD record level. That

is, the first XML element tag to match a field on the CRD should contain the minimum

amount of information needed to populate one entire CRD.

In the following example the top level group field in the CRD (TV-LISTINGS) is

deliberately coded in capital letters so that it doesn’t match with the XML root element.

Instead, <TV-today> is the first XML element on the input that matches a field on the

CRD and so it becomes the UDT. <TV-today> contains just enough data to populate the

whole CRD with the minimum of repeated elements, making it the optimum UDT.

www.redversconsulting.com Page 24

RCFSTCOB User Guide

Eg:

XML Document

 <TV-listings>
 <TV-today>
 <broadcast-date>11/12/2002</broadcast-date>
 <channel>05
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 </channel>
 <channel>06
 <prog-name>Westenders</prog-name>
 <prog-time>08:00</prog-time>
 </channel>
 </TV-today>
 <TV-today>
 <broadcast-date>12/12/2002</broadcast-date>
 <channel>05
 <prog-name>Monday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 </channel>
 </TV-today>
 </TV-listings>

CRD

 01 TV-LISTINGS.

 03 TV-today.

 05 broadcast-date PIC 9(8).

 05 channel.

 07 channel-number
* <>

PIC 99.

 07 prog-name PIC X(23).

 07 prog-time PIC X(5).

www.redversconsulting.com Page 25

RCFSTCOB User Guide

Calling RCFSTCOB

Parameters

A call to RCFSTCOB requires eight parameters in the following sequence:

CRD-OBJECT-AREA (input)

This is the area of storage built by the application which holds the CRD object output

from RCFSTCMP. The CRD defined for the XML document will have been passed through

RCFSTCMP in a one-off batch process and the output made accessible to the application.

CRD-RECORD-COUNT (input)

This S9(8) binary field contains a count of the number of 132 byte records that make up

CRD-OBJECT-AREA.

XML-DOCUMENT (input)

This is the storage area containing the XML document to be parsed.

XML-DOCUMENT-LENGTH (input & output)

This S9(8) binary field must be set to the actual length of the XML document text within

XML-DOCUMENT and not changed during the parsing process. When RCFSTCOB has

fully parsed the document, it will change this value to zero in order to indicate that the

document has been fully parsed and to help prevent potential logic loops. The maximum

XML-DOCUMENT-LENGTH supported by the interface is 99,999,999 characters.

COBOL-RECORD (output)

This is the top level field name in the COBOL Record Definition (CRD) defined in the

calling program. This is the data area to be populated by RCFSTCOB.

www.redversconsulting.com Page 26

RCFSTCOB User Guide

COBOL-RECORD-LENGTH (input)

This S9(8) binary field must be set to the logical length of COBOL-RECORD. It is used

in validation only, to ensure COBOL-RECORD reflects the CRD in CRD-OBJECT-AREA.

If the logical length of COBOL-RECORD is difficult to determine (perhaps the same

COBOL-RECORD storage area is being used to process several CRD’s of different

lengths), this value can be found in the appropriate CRD-OBJECT-AREA. The value is

held as an unsigned 7 digit packed decimal field (PIC 9(7) COMP-3) in positions 111

through 114 of CRD-OBJECT-AREA. These 4 bytes can be moved to the application

program’s working storage and a REDEFINES can be used to access the actual value.

FEEDBACK-CODE (output)

This S9(4) binary field is set by RCFSTCOB to return the status of a call to the interface.

This field should be checked for non-zero values after each call. If the call was

successful this field will be set to zero or 10 (end of processing) otherwise it will contain

an error code.

See Feedback Messages at the end of this document for further information.

FEEDBACK-TEXT (output)

This eighty byte text field is set by RCFSTCOB with diagnostic information on the results

of each call. For successful calls it is populated with a message showing the position of

the first field updated by the call (as it appears in the CRD) and the number of fields

populated so far. For unsuccessful calls it contains an error message. See Feedback

Messages at the end of this document for further information.

Note: The parameter names used in this manual are suggestions only and may be
changed to names more suitable to the application making the call.

www.redversconsulting.com Page 27

RCFSTCOB User Guide

Calls to RCFSTCOB

The First Call

When the interface is called for the first time, RCFSTCOB will validate the calling

parameters and read the first Unit of Data Transfer (UDT) from the XML document (see

Optimizing Performance for more details on UDT’s). RCFSTCOB attempts to match all

attribute and element tags in the UDT with field names on the CRD. All available

matched fields in the CRD are populated. Repeated XML elements within the UDT are

written to the work area which becomes the input for the next call.

Once processing is complete, FEEDBACK-CODE is set to zero and FEEDBACK-TEXT is

populated with a message showing the position of the first field updated (as it appears in

the CRD) and the number of fields populated.

Subsequent Calls

Each subsequent call to RCFSTCOB initiates a pass of either the work area or the next

UDT from the XML document. For each pass, all matching tags and attributes in the CRD

are populated while any repetitions that cannot fit in the layout are replaced in the work

area.

There are three ways in which an application program can find out what CRD fields have

been updated in each subsequent call to the interface:

• Use the numeric value in positions 28 through 31 of the returned FEEDBACK-

TEXT. This value represents the relative field position, within the CRD, of the first

field to be updated by the interface. Interrogating this value tells the application

program the precise group level or elementary field that has been populated in

the call. This technique should be used for more stable CRD layouts as any

additions or removals from the CRD will cause the relative field positions below to

change, thereby requiring procedure code changes.

• Test key fields for change, starting with the highest level key. In most data

structures a repetition of a set of corresponding data is associated with a key field

that identifies the group. Using the TV listings example, testing for a change in

channel number would initiate new channel processing logic in the application

program; if the channel number is the same, testing for a change in program

name or time would initiate the new TV program processing, etc.

• Move a figurative constant (spaces, zeroes, low-values or high-values) to the

entire COBOL-RECORD (defined by the CRD) between calls and test for fields

www.redversconsulting.com Page 28

RCFSTCOB User Guide

that don’t contain the figurative constant used. Once the interface passes back

data in the COBOL-RECORD to the application, it has no further use for it. This

is the simplest way to identify the populated fields but any useful data held

previously in the COBOL-RECORD will need to be stored elsewhere.

After successful completion of each pass, FEEDBACK-CODE is set to zero and

FEEDBACK-TEXT is populated with a message showing the position of the first field

updated and the number of fields populated so far.

The Last Call

When there is no more XML data to be parsed, RCFSTCOB sets XML-DOCUMENT-

LENGTH to zero, sets FEEDBACK-CODE to 10 (indicating “end of processing”) and

populates FEEDBACK-TEXT with a message indicating that processing is complete. No

data is transferred to the CRD in this call.

Note: If RCFSTCOB remains in memory after the last call, it can be reused to parse
another XML document for the same, or a different, CRD by repopulating the calling
parameters and restarting the call sequence from the first call.

www.redversconsulting.com Page 29

RCFSTCOB User Guide

Sample Program Calling RCFSTCOB

…
000040**
000050* This sample code shows how RCFSTCOB is called to produce *
000060* COBOL records of data from an XML document. *
000070* *
000080* The CRD associated with this application will need to be *
000090* passed through the Redvers CRD compiler (RCFSTCMP) before *
000100* being loaded by the application. The CRD object file can *
000110* exist in storage, on a database or on a flat file. This *
000120* sample code uses a flat file (RCCRDOBJ). *
000130**
000132
000140 ENVIRONMENT DIVISION.
000150 INPUT-OUTPUT SECTION.
000160 FILE-CONTROL.
000170
000180 SELECT CRD-FILE ASSIGN RCCRDOBJ.
000190
000192
000200 DATA DIVISION.
000210 FILE SECTION.
000220
000230 FD CRD-FILE
000240 BLOCK CONTAINS 0 CHARACTERS
000250 LABEL RECORDS STANDARD.
000260 01 CRD-RECORD PIC X(132).
000270
000272
000280 WORKING-STORAGE SECTION.
000290
000300*** Storage area for the CRD object file:
000310 01 CRD-OBJECT-AREA.
000320 03 CRD-OBJECT-RECORD PIC X(132) OCCURS 400.
000330
000340*** Storage area containing the XML document to be parsed:
000350 01 XML-DOCUMENT PIC X(16000).
000360
000370*** Start of COBOL Record Definition (CRD)
000380 01 TV-listings.
000390 03 channel.
000400 05 channel-number PIC 99.
000410* <number=>
000420 05 channel-name PIC X(20).
000430* <>
000440 05 TV-program OCCURS 10.
000450 07 prog-name PIC BBX(20)BB.
000460 07 prog-time PIC X(05).
000470 07 prog-rating OCCURS 1.
000480* <rating>
000490 09 rating-txt1 PIC X(20)B.
000500* <>
000510 09 mark PIC Z9.
000520 09 rating-txt2 PIC BX(20).
000530* <>
000540 05 channel-owner PIC X(20).
000550* <>
000560*** End of COBOL Record Definition (CRD)
000570

www.redversconsulting.com Page 30

RCFSTCOB User Guide

000572
000580 01 OTHER-PARAMETER-FIELDS.
000590 03 CRD-RECORD-COUNT PIC S9(8) BINARY VALUE ZERO.
000600 03 XML-DOCUMENT-LENGTH PIC S9(8) BINARY.
000610 03 COBOL-RECORD-LENGTH PIC S9(8) BINARY VALUE ZERO.
000620 03 FEEDBACK-CODE PIC S9(4) BINARY VALUE ZERO.
000630 03 FEEDBACK-TEXT.
000640 05 FILLER PIC X(27).
000650 05 FIRST-FIELD-LOADED PIC 9(04).
000660 05 FILLER PIC X(49).
000670
000672
000680 01 MISCELLANEOUS-FIELDS.
000690 03 CRD-TABLE-SIZE PIC 9(04) VALUE ZERO.
000700 03 CRD-FLAG PIC X VALUE SPACE.
000710 88 START-OF-CRD VALUE SPACE.
000720 88 END-OF-CRD VALUE "E".
000730
000732
000740 PROCEDURE DIVISION.
000750
000760 TOP-LEVEL SECTION.
000770**
000780* This section loads the CRD object file into CRD-OBJECT-AREA *
000810* and calls RCFSTCOB to parse the content of XML-DOCUMENT into *
000820* the COBOL Record Definition area until RCFSTCOB returns an *
000830* end of processing status (FEEDBACK-CODE of 10). *
000832* XML-DOCUMENT will already contain the XML document to be *
000834* parsed and XML-DOCUMENT-LENGTH will already contain the *
000836* length of the XML document text. *
000840**
000850 TOP-ENTER.
000860
000870 COMPUTE CRD-TABLE-SIZE = LENGTH OF CRD-OBJECT-AREA
000880 / LENGTH OF CRD-OBJECT-RECORD (1).
000890 MOVE LENGTH OF TV-LISTINGS TO COBOL-RECORD-LENGTH.
000960
000970 INITIALIZE TV-LISTINGS
000972 FEEDBACK-TEXT.
000980
001010 PERFORM B-LOAD-CRD.
001020
001030 PERFORM C-CALL-RCFSTCOB.
001040
001050 PERFORM UNTIL FEEDBACK-CODE > ZERO
001060 PERFORM D-PROCESS-XML-INPUT
001070 PERFORM C-CALL-RCFSTCOB
001080 END-PERFORM.
001090
001100*** Display the processing complete message:
001110 DISPLAY FEEDBACK-TEXT.
001120
001130 STOP RUN.
001140
001150 TOP-EXIT.
001160 EXIT.
001170
001180
001190
001200
001210

www.redversconsulting.com Page 31

RCFSTCOB User Guide

001610 B-LOAD-CRD SECTION.
001620**
001630* This section reads the CRD object file into CRD-OBJECT-AREA. *
001640**
001650 B-ENTER.
001660
001670 OPEN INPUT CRD-FILE.
001680
001690 PERFORM
001700 UNTIL END-OF-CRD
001710 OR CRD-RECORD-COUNT = CRD-TABLE-SIZE
001720 READ CRD-FILE
001730 AT END
001740 SET END-OF-CRD TO TRUE
001750 NOT AT END
001760 ADD 1 TO CRD-RECORD-COUNT
001770 MOVE CRD-RECORD TO CRD-OBJECT-RECORD
001780 (CRD-RECORD-COUNT)
001790 END-READ
001800 END-PERFORM.
001810
001820 CLOSE CRD-FILE.
001830
001840 IF NOT END-OF-CRD
001850 DISPLAY "CRD-OBJECT-AREA TABLE IS FULL!"
001860 DISPLAY "CURRENT SIZE IS: " CRD-TABLE-SIZE
001870 STOP RUN
001880 END-IF.
001890
001900 B-EXIT.
001910 EXIT.
001920
001930
001932
001940 C-CALL-RCFSTCOB SECTION.
001950**
001960* This section executes the CALL to the interface and checks *
001970* the feedback code. *
001980**
001990 C-ENTER.
002000
002010 CALL "RCFSTCOB" USING CRD-OBJECT-AREA
002020 CRD-RECORD-COUNT
002030 XML-DOCUMENT
002040 XML-DOCUMENT-LENGTH
002050 TV-LISTINGS
002060 COBOL-RECORD-LENGTH
002070 FEEDBACK-CODE
002080 FEEDBACK-TEXT.
002090
002100 IF FEEDBACK-CODE > 10
002110 DISPLAY "BAD RETURN FROM RCFSTCOB - FEEDBACK CODE IS "
002120 FEEDBACK-CODE
002130 DISPLAY "MESSAGE READS: " FEEDBACK-TEXT
002140 STOP RUN
002150 END-IF.
002160
002170 C-EXIT.
002180 EXIT.
002190
002200

www.redversconsulting.com Page 32

RCFSTCOB User Guide

002202
002210 D-PROCESS-XML-INPUT SECTION.
002220**
002230* The following code uses FIRST-FIELD-LOADED in FEEDBACK-TEXT *
002240* to indicate the field number in the CRD that was first *
002250* populated in order to decide on what processing is required. *
002260* An alternative and more flexible approach would be to check *
002270* which key fields have changed as a result of the call. *
002280**
002290 D-ENTER.
002300
002310 EVALUATE FIRST-FIELD-LOADED
002320 WHEN 1
002330*** process new document
002340 CONTINUE
002350 WHEN 2
002360*** process next channel
002370 CONTINUE
002380 WHEN 5
002390*** process next program
002400*** (for this to happen there must have been more than 10
002410*** programs for the channel)
002420 CONTINUE
002430 WHEN OTHER
002440*** process other field group changes
002450 CONTINUE
002460 END-EVALUATE.
002470
002540 D-EXIT.
002550 EXIT.

www.redversconsulting.com Page 33

RCFSTCOB User Guide

Selecting XML elements

From release 2.7 onwards, the Redvers COBOL XML Interface parser routine is capable of

selective XML parsing, based on a simple SELECT statement, passed through the

FEEDBACK-TEXT parameter. If the application sets the first 6 character positions of

FEEDBACK-TEXT to “SELECT”, selection logic will be invoked and the SELECT statement

will be validated and processed.

SELECT Statement Format

Standard:

SELECT |<TagName>|* |<TagName AttributeName>|? |EQ| ‘literal’
 |GT|
 |LT|
 |GE|
 |LE|
 |NE|

Or:

SELECT NEXT

|…|: Option.
*: Zero, one or many occurrences.
?: Zero or one occurrence.

SELECT Statement Syntax

• SELECT must start in position 1.

• There must be at least one <TagName> or <TagName AttributeName> option
present.

• There must be one EQ, GT, LT, GE, LE or NE option present.
• ‘literal’ can be delimited by single or double quotes but not both.

• Single or multiple spaces within the statement are optional.

• SELECT NEXT can only be used after a previous valid SELECT statement.

www.redversconsulting.com Page 34

RCFSTCOB User Guide

SELECT Statement Use

To use the SELECT statement successfully, the application must identify the XML

element or attribute to be tested using the <TagName> and/or <TagName AttributeName>
options:

• <TagName> identifies an element within the root or previous <TagName> (if present).

• <TagName AttributeName> identifies an element and attribute within the root or
previous <TagName> (if present).

The application program therefore places as many <TagName> and/or <TagName

AttributeName> options in the FEEDBACK-TEXT parameter as are necessary to

uniquely identify the XML element or attribute within the XML instance document.

The position of the <TagName> and/or <TagName AttributeName> options in the SELECT

statement must be the same as their position in the XML hierarchy.

Currently only the EQ (equal), GT (greater than), LT (less than), GE (greater than or

equal), LE (less than or equal) or NE (not equal) operators (in capitals) are supported,

although this list may be extended in a future release.

The literal value must be coded as it would appear in the XML document – NOT as it

would appear after it has been loaded into the CRD. If the length of the literal is less

than the length of the element content, zeroes or spaces are assumed to the right or left

of the literal depending on the picture clause in the CRD.

If the total length of the SELECT statement is longer than the length of the FEEDBACK-

TEXT parameter (80 bytes), additional options may be passed to the parser routine in

subsequent calls. When this occurs, no XML data is parsed and FEEDBACK-TEXT is

returned with “STORING SELECT DETAILS...”. A single option or literal cannot be split

across multiple calls.

If the FEEDBACK-TEXT parameter does not contain “SELECT” in the first 6 positions, the

parser will return to normal mode and return XML data from the next Unit of Data

Transfer (UDT).

The SELECT NEXT statement repeats the previous successful SELECT statement

regardless of whether any normal mode calls were executed since the previous SELECT

statement.

www.redversconsulting.com Page 35

RCFSTCOB User Guide

If the selection is successful, the CRD will be returned containing XML data from the

selected element or attribute AND data from elements and attributes, both above and

below the selection, in the XML hierarchy.

If no XML data content could be found matching the SELECT statement condition,

FEEDBACK-TEXT is set to “RUN COMPLETED - NO XML ELEMENTS SELECTED” and

FEEDBACK-CODE is set to +0010.

More sophisticated SELECT features may be added in future releases depending on

customer demand.

www.redversconsulting.com Page 36

RCFSTCOB User Guide

SELECT Statement Example

XML Document

 <TV-listings>
 <TV-today>
 <broadcast-date>11/12/2010</broadcast-date>
 <channel number=”5”>
 <TV-program>
 <prog-name>Sunday Night Live</prog-name>
 <prog-time>10:00</prog-time>
 </TV-program>
 </channel>
 <channel number=”6”>
 <TV-program>
 <prog-name>Westenders</prog-name>
 <prog-time>08:00</prog-time>
 </TV-program>
 </channel>
 </TV-today>
</TV-listings>

FEEDBACK-TEXT

SELECT <TV-listings> <channel number> GT ”5”

Fields in CRD Populated with

 01 TV-LISTINGS.

 03 TV-today.

 05 broadcast-date PIC 9(8). 11122010

 05 channel.

 07 channel-nbr
* <number=>

PIC 99. 06

 07 TV-program.

 09 prog-name PIC X(20). “Westenders ”

 09 prog-time PIC X(5). “08:00”

In the previous example <TV-today> was omitted from the SELECT statement in

FEEDBACK-TEXT because <channel> is a unique element name within <TV-

listings>. In fact <TV-listings> could also have been omitted for the same reason.

Note: After the SELECT on <channel number> completes, fields higher in the CRD
hierarchy (“broadcast-date”) and lower in the hierarchy (the first “prog-name” and
“prog-time”) are also populated.

www.redversconsulting.com Page 37

RCFSTCOB User Guide

Alternative Namespace Prefixes

In response to the increased use of XML namespaces, release 2.7 gives applications the

capability to parse instance documents containing namespace prefixes, not previously

known to the application.

In order to parse elements and attributes with namespace prefixes different from those

coded in the CRD, RCFSTCOB stores namespace declaration prefixes and URI’s in the

entity table, in its working storage. If an input XML tag fails to match with a field name

in the CRD, the entity table is checked to see if an alternative namespace prefix exists

for the same URI. If it does, the alternative prefix is assumed for the remainder of the

parse and the elements/attributes are loaded into the CRD.

The maximum number of entries in the entity table and the maximum length of the

prefixes and URI’s can be adjusted using the Maximum-number-of-entities, Maximum-

entity-argument and Maximum-entity-length User Maintained Variables. See User

Maintained Variables for details.

Namespace declaration information can be stored from any of three sources:

•

•

•

The instance document root.

Performing a pre-parse of the instance document, collecting all namespace

declarations.

A <xmlnamespaces> element held in the calling application.

Each option is discussed below:

The Instance Document Root

Namespace declaration details within the instance document root element are loaded into

the entity table by default. For the majority of applications, no other namespace

processing is necessary.

Note: This default process does not load namespace declarations in the body of the
instance document. If additional namespace declaration details are required, see The
xmlnamespaces Element or Performing a Pre-parse sections.

www.redversconsulting.com Page 38

RCFSTCOB User Guide

Performing a Pre-parse

To pre-load all namespace declaration details from within the body the XML instance

document, a pre-parse of all attributes in the document is required. This processing can

be switched on by the use of a special processing flag set in your copy of RCFSTCOB.

For more information please contact your account manager or use our “Contact” facility

at: http://www.redversconsulting.com/contact.php.

The xmlnamespaces Element

Additional namespace declaration information can be passed to RCFSTCOB using a

dummy <xmlnamespaces> element, inserted before the XML instance document by the

application. This element can be written from scratch using an editor or the text can be

copied from one or more <schema> root elements. Any non-namespace declarations

are ignored. See xmlnamespaces Example.

The benefit from using the <xmlnamespaces> element is that any number of namespace

declarations can be passed to RCFSTCOB, providing a complete list of all possible

namespace prefixes and their URI’s. This information provides the parser with a cross-

reference of all possible alternative prefixes for each URI without the need for a pre-

parse.

Note: When the <xmlnamespaces> element is passed to RCFSTCOB, namespace
declarations in the instance document root element are also loaded into the entity table.
However, namespace declarations in the body of the instance document are not loaded.
If namespace declaration details in the body of the instance document are also required,
see Performing a Pre-parse section.

www.redversconsulting.com Page 39

http://www.redversconsulting.com/contact.php

RCFSTCOB User Guide

xmlnamespaces Example

<xmlnamespaces> in the Application

 <xmlnamespaces
 xmlns="http://www.redversconsulting.com/schema.xsd"
 xmlns:fred=”http://www.redversconsulting.com/schema.xsd”
 xmlns:dave="http://www.redversconsulting.com/schema.xsd"
 xmlns:bob="http://www.redversconsulting.com/schema.xsd"
 targetNamespace="http://www.redversconsulting.com/schema.xsd"
 attributeFormDefault="unqualified"/>

XML Document

 <fred:TV-listings>
 <fred:broadcast-date>11/12/2010</fred:broadcast-date>
 <channel number=”5”>
 <bob:TV-program>
 <bob:prog-name>Sunday Night Live</bob:prog-name>
 <bob:prog-time>10:00</bob:prog-time>
 </bob:TV-program>
 </channel>
</fred:TV-listings>

Fields in CRD Populated with

 01 TV-listings.

 03 broadcast-date PIC 9(8). 11122010

 03 channel.
* <dave:channel>

 05 channel-nbr
* <dave:number=>

PIC 99. 05

 05 TV-program.

 07 prog-time PIC X(5). “10:00”

 07 prog-name PIC X(20). “Sunday Night Live ”

In the example above, namespace declarations in <xmlnamespaces> mean that prefixes

“fred”, “dave”, “bob” and no-prefix are all associated with the same namespace URI

(http://www.redversconsulting.com/schema.xsd) and are therefore alternative definitions of

each other. When <TV-listings> is parsed, tag-name/field-name matches occur for all

CRD fields because all namespace prefixes are effectively the same.

Note: The <xmlnamespaces> element must be added by the receiving application just
before the call to the Redvers parser routine. It cannot be added by the sending
application because all tag names starting with “xml” are illegal under XML syntax rules
(this is why the name “xmlnamespaces” was chosen – it cannot be part of a valid XML
instance document).

www.redversconsulting.com Page 40

RCFSTCOB User Guide

Data Integrity
Character Range

RCFSTCOB accepts single byte characters in the hexadecimal range “00” through “FF”.

However, the end-of-text character (hex “03” in EBCDIC and ASCII) is used internally by

the interface and is not loaded into the CRD. The end-of-text character is not within the

XML character range defined by the W3C Extensible Markup Language (XML) 1.0 (Second

Edition) definition.

Character References

Unicode character references are passed to the CRD unchanged. No attempt is made to

interpret their character form.

Entity References

Data is usually transferred from XML elements to CRD fields without alteration.

However, if an XML entity is encountered, the entity name (along with the preceding “&”

and trailing “;”) are automatically substituted for the entity replacement text. The

interface does this for the standard XML predefined entities (listed below) as well as

general, internal, parsed entities defined in the incoming DTD.

Entity Reference Description Character

> greater than >
< less than <

& ampersand &
' apostrophe ‘
" double quote “

If general, internal, parsed entity declarations are encountered in the input DTD their

details are stored in a working storage table so that substitution can take place as they

are encountered on the input data stream. The maximum number of entries in the entity

table and the maximum length of the entity values can be adjusted using the Maximum-

number-of-entities and Maximum-entity-length User Maintained Variables. See User

Maintained Variables for details.

www.redversconsulting.com Page 41

RCFSTCOB User Guide

CDATA

Character data strings, within the <![CDATA[and]]> delimiters, are loaded into CRD

fields entirely unchanged. This includes entity references and other XML markup chtrs.

CDATA can occupy the entire content of an element or it may just form part of it.

The “<![CDATA[“ and “]]>” literals themselves are NOT passed to the CRD fields.

Maximum Document Size

The Redvers COBOL XML Interface is designed to process XML documents up to

99,999,999 bytes in length. As this limit exceeds the maximum field size for most

COBOL compilers, the picture clause for the XML-DOCUMENT parameter in linkage is

set to: PIC X(9999999).

If a document length greater than 9,999,999 bytes is required, and if the platform can

support a greater field length, the picture clause for the XML-DOCUMENT parameter in

linkage may need to be changed from: PIC X(9999999) to a longer picture definition (up

to 99,999,999 bytes).

Processing Instructions

Due to the fact that processing instructions do not actually contain data that can be

moved into a COBOL field these are ignored by the interface.

Comments

Due to the fact that comments do not actually contain data that can be moved into a

COBOL field these are ignored by the interface.

White Space

Due to the nature of COBOL applications RCFSTCOB assumes all XML elements contain

the attribute: xml:space=”preserve”. In most circumstances this will have the desired

effect, as spaces within the content of XML elements are preserved and spaces between

elements are ignored. This rule also applies to carriage return and line feed characters.

If settings other than those described above are required, contact your Redvers

Consulting representative.

www.redversconsulting.com Page 42

RCFSTCOB User Guide

User Maintained Variables

One of the features of the Redvers COBOL XML Interface is that it is sold as COBOL

source code. This means that certain parameters can be adjusted to suit the

requirements of individual applications. These parameters are called User Maintained

Variables and can be found in the “preserved” parts of the identification, environment

and data divisions, marked by a following comment line beginning <UMV> with “*”s

underlining the variable value.

NO PROCEDURE DIVISION CHANGES ARE NECESSARY.

These variables are defaulted to values that should be adequate in most circumstances

while keeping storage requirements to a minimum.

Changes to User Maintained Variables in accordance with these instructions will

not invalidate the warranty.

Program-ID

The program-id may be changed to suit site standards or to allow for multiple versions of

RCFSTCOB and RCFSTCMP with different User Maintained Variables.

SELECT Statements

In RCFSTCMP, external file names and other information specified in the SELECT

statements can be changed to suit site standards and/or to satisfy platform compatibility

requirements.

File Definition Statements

In RCFSTCMP, the input and output FD statements may be changed to suit site

standards and/or to satisfy platform compatibility requirements. For example: “BLOCK

CONTAINS 0 CHARACTERS” is frequently used on IBM platforms but not on HP platforms.

www.redversconsulting.com Page 43

RCFSTCOB User Guide

Work-area-size

The maximum number of bytes to be used for storing duplicated elements. This is the

storage area mentioned in the Optimizing Performance section when duplicate elements

exist in a Unit of Data Transfer (UDT). The requirement for work area space can be

minimised by designing the CRD so that the first XML element tag to match a field on the

CRD contains the minimum amount of information needed to populate one entire CRD –

see Optimizing Performance for more details. This UMV is defaulted to 4,096 but if more

space is required it can be increased. Similarly, if storage is limited, this value can be

decreased to the total length of the maximum duplicated elements possible in a UDT plus

10% overhead.

Maximum-number-of-entities

The entity table is used to store general, internal, parsed entity declarations and

namespace declarations. The maximum number of these declarations is defaulted to 20.

If an input XML document contains more than 20 declarations this UMV can be increased.

Similarly, if storage is limited, this value can be decreased to the largest number of

expected declarations.

Maximum-entity-argument

For each declaration stored in the entity table, the maximum entity argument length or

namespace prefix length is defaulted to 30. If an input XML document contains entity

arguments or namespace prefixes longer than 30 characters in length, this UMV can be

increased.

Maximum-entity-length

For each declaration stored in the entity table, the maximum entity value length or

namespace URL length is defaulted to 100. If an input XML document contains entity

values or namespace URLs longer than 100 characters in length, this UMV can be

increased.

www.redversconsulting.com Page 44

RCFSTCOB User Guide

Maximum-number-of-fields

The maximum number of discrete fields in the COBOL Record Definition (CRD) is

defaulted to 400 in both RCFSTCMP and RCFSTCOB (fields using the OCCURS clause are

counted as one discrete field). If an application requires more than 400 fields in a single

CRD, the number in the OCCURS clause for this UMV can be increased. Similarly, if

storage is limited, this value can be decreased to save on storage requirements.

www.redversconsulting.com Page 45

RCFSTCOB User Guide

RCFSTCMP Compile Errors

The following error messages may be displayed by RCFSTCMP in the event that the input

CRD could not be interpreted. If an error message is issued, no CRD object file will be

produced.

Error
Code

Error Text Reason

+0101 NO FIELDS IDENTIFIED
ON RECORD DEFINITION

No fields were identified on the input CRD.

+0102 TOO MANY FIELDS ON
RECORD DEFINITION

The number of COBOL Record Definition fields on
the input file exceeded the number allowed in the
compiler’s table. Increase this value.

(See Maximum-number-of-fields in the User
Maintained Variables section.)

+0103 PROCESSING EXCEPTION.
PLEASE CONTACT
REDVERS CONSULTING

There has been an internal logic error within the
program. Please contact your Redvers Consulting
account manager.

+0180 INVALID ACTIVATION
KEY. PLEASE PLACE
YOUR ACTIVATION KEY
IN THE LAST W.S.
FIELD

The Redvers COBOL XML Interface is supplied with
a 32 character activation key. Please edit the
RCFSTCMP source code and place this activation
key in the VALUE clause literal for the last field
definition in working storage. Then recompile.

+0190 30 DAY TRIAL PERIOD
EXPIRED OR CALL LIMIT
REACHED

The Redvers COBOL XML Interface can be
downloaded free of charge for a thirty day trial
period. The thirty days have now elapsed.

Please contact Redvers Consulting for an
additional thirty day trial or to arrange payment.

+0201 TOO MANY CHARACTERS
FOR LEVEL NUMBER

RCFSTCMP was expecting a COBOL level number
in the CRD file but found a string of more than
two characters.

This message also points to the offending line
number within the CRD file.

+0202 INVALID LEVEL NUMBER A COBOL level number that was not numeric or a
level number greater than 49 but not 88 was
found in the COBOL Record Definition.

This message also points to the offending line
number within the CRD file.

+0203 ILLEGAL DATA CLAUSE
FOUND

An unsupported data clause was found in the field
definition.

See Clauses not Supported section.

This message also points to the offending line
number within the CRD file.

www.redversconsulting.com Page 46

RCFSTCOB User Guide

+0204 INVALID NUMBER OF
OCCURRENCES

An OCCURS clause was identified but it was not
followed by a valid integer of more than zero and
less than 9999.

This message also points to the offending line
number within the CRD file.

+0205 INVALID PICTURE
DEFINITION

A PIC clause was identified but it was not followed
by a valid string of characters less than 30 in
length.

This message also points to the offending line
number within the CRD file.

+0207 EXCEEDED MAXIMUM TAG
SIZE

An override tag name of more than 100
characters was encountered. The Superfast level
interface is not designed to handle tag names of
more than 100 characters. Please use one of the
other Redvers COBOL XML Interface levels.

This message also points to the offending line
number within the CRD file.

+0208 INVALID FILL CONSTANT An invalid override fill constant was found in an
override tag name in the CRD. The value found
didn’t match one of the allowable fill constants:
“L” for low-values, “H” for high-values, “S” for
spaces, “Z” for zeroes and “Q” for quotes. (See
Override Fill Constants for details.)

This message also points to the offending line
number within the CRD file.

+0209 INCOMPLETE FILL
CONSTANT TAG

An override fill constant was found in an override
tag name in the CRD but the override was not
completed with the “>” character. (See Override
Fill Constants for details.)

This message also points to the offending line
number within the CRD file.

+0210 TAG DOES NOT START
WITH AN ALPHABETIC
CHARACTER

All XML tags must start with an alphabetic
character.

This message also points to the offending line
number within the CRD file.

+0211 TAG NAME CONTAINS
INVALID XML
CHARACTERS

XML tag names are confined to using only
alphabetic, numeric, “-“, “_”, “:” or “.” characters.

This message also points to the offending line
number within the CRD file.

+0214 ATTRIBUTES MAY NOT BE
GROUP LEVEL ITEMS

Attributes (tag names ending with “=”) must be
elementary data items.

This message also points to the offending line
number within the CRD file.

www.redversconsulting.com Page 47

RCFSTCOB User Guide

+0215 ATTRIBUTE TAGS MAY
NOT OCCUR MORE THAN
ONCE

Attribute tags (those ending with “=”) may occur
only once in the parent/group level tag.

This message also points to the offending line
number within the CRD file.

+0220 GROUP ITEM MUST NOT
HAVE A PICTURE

The field named in the message is at a higher
level than the next field in the COBOL Record
Definition and is therefore a group item.
However, a picture clause was encountered for
this field.

This error would normally have been caught in the
compile stage.

+0221 ELEMENTARY FIELD MUST
HAVE A PICTURE

The field named is at an equal or lower level than
the next field in the COBOL Record Definition and
is therefore an elementary item. However, a
picture clause was not given for this field.

This error would normally have been caught in the
compile stage.

+0222 MORE THAN ONE ROOT
ELEMENT FOUND

The structure of the COBOL Record Definition may
not have more than one root level.

This message includes the offending field tag
name.

+0224 NO TAG NAME FOR THE
ROOT ELEMENT

A COBOL name or override tag name is required
for the root element of any XML document.

+0225 THE ROOT ELEMENT
CANNOT OCCUR MORE
THAN ONCE

The maximum OCCURS value for a root element is
1.

+0226 INVALID POSITION FOR
ATTRIBUTE

Attributes (tag names ending with a “=“) must be
coded within the group they relate to and they
must be the first fields in that group.

This message includes the offending attribute
name.

+0227 MISSING GROUP TAG FOR
ATTRIBUTE ELEMENT

The group level data item must have a tag if it is
to hold an attribute (tag names ending with a “=“)
field.

This message includes the offending attribute
name.

+0230 ENCOUNTERED MULTIPLE
DIMENSION ARRAY

An OCCURS clause greater than 1 has been nested
within another OCCURS clause greater than 1.
Only single dimension arrays are currently
supported.

To overcome this problem define a single
dimension array and make multiple calls to the
interface for each occurrence of the data item.

This message includes the offending field tag
name.

www.redversconsulting.com Page 48

RCFSTCOB User Guide

RCFSTCOB Feedback Messages

A FEEDBACK-CODE less than +100, indicates processing has completed successfully

and that FEEDBACK-TEXT contains diagnostic information.

The +100 series indicate fatal parameter errors.

The +300 series indicate fatal errors caused by inconsistencies in the XML document.

FEEDBACK
-CODE

FEEDBACK-TEXT

+0000 CRD LOADED FROM FIELD NBR: 9999 FIELDS LOADED SO FAR: 99999999

FEEDBACK
-CODE

FEEDBACK-TEXT Reason

+0010 RUN COMPLETED - ALL
XML ELEMENTS LOADED

RCFSTCOB has successfully loaded all matched
elements from the current XML document into
COBOL-RECORD. No fields were populated in
this call. This is not an error feedback.

+0010 RUN COMPLETED - NO
XML ELEMENTS LOADED

RCFSTCOB did not find any data on the input
XML document that could be loaded into the
CRD. Either the input file was empty or no XML
tag names matched with CRD field names.
This is not an error feedback.

+0010 RUN COMPLETED - NO
XML ELEMENTS SELECTED

RCFSTCOB did not find any XML content that
satisfied the SELECT statement provided. SELECT
logic proceeds from the point the last call
completed, down the XML document. Matching
data content could exist earlier in the document.
This is not an error feedback.

+0101 NO FIELDS IDENTIFIED
ON RECORD DEFINITION

The CRD-RECORD-COUNT parameter was zero.

Probable causes are that the previous
recompilation by RCFSTCMP failed in some way
or the calling application hasn’t loaded the
compiled CRD in CRD-OBJECT-AREA.

+0103 PROCESSING EXCEPTION.
PLEASE CONTACT
REDVERS CONSULTING

There has been an internal logic error within the
program. Please contact your Redvers
Consulting account manager.

www.redversconsulting.com Page 49

RCFSTCOB User Guide

+0110 RECORD DEFINITION /
LINKAGE MISMATCH

The logical length of CRD-OBJECT-AREA was
not the same as COBOL-RECORD-LENGTH
passed in linkage.

Probable causes are that the CRD needs to be
recompiled by RCFSTCMP, the CRD has been
changed but the calling program was not
recompiled or that the layout used in the calling
program is not the one in CRD-OBJECT-AREA.

+0180 INVALID ACTIVATION
KEY. PLEASE PLACE
YOUR ACTIVATION KEY
IN THE LAST W.S.
FIELD

The Redvers COBOL XML Interface is supplied
with a 32 character activation key. Please edit
the RCFSTCOB source code and place this
activation key in the VALUE clause literal for the
last field definition in working storage. Then
recompile.

+0190 30 DAY TRIAL PERIOD
EXPIRED OR CALL LIMIT
REACHED

The Redvers COBOL XML Interface can be
downloaded free of charge for a thirty day trial
period. This free version may be called up to
100 times in a single application execution.
Either the thirty days have now elapsed or your
application is trying to call RCFSTCOB more than
100 times.

Please contact Redvers Consulting for an
additional thirty day trial or to arrange payment.

+0301 CALL SEQUENCE ERROR A call to RCFSTCOB has been made at an illogical
processing phase.

Likely explanations are that FEEDBACK-CODE
was not checked after a previous unsuccessful
call or that all XML data has already been loaded
and the previous call returned a +0010
FEEDBACK-CODE.

+0302 PARAMETERS MUST NOT
CHANGE AFTER INITIAL
CALL

One or more of the input calling parameters was
found to have changed after the first call to the
interface. Likely explanations are that the
application has inadvertently overwritten one or
more of the working storage fields used in the
call to the interface or the application is
attempting to parse a new XML document before
completing the previous one.

+0305 ENTITY TABLE IS FULL Too many entity definitions were found at the
start of the input DTD for the table. (See
Maximum-number-of-entities in the User
Maintained Variables section.)

This message also identifies the offending entity
name in the DTD.

+0306 ENTITY VALUE IS TOO
LONG FOR ENTITY TABLE

An entity value defined in the DTD is too long to
fit in the entity table. (See Maximum-entity-
length in the User Maintained Variables section.)

This message also identifies the offending entity
name in the DTD.

www.redversconsulting.com Page 50

RCFSTCOB User Guide

+0308 WORK AREA IS FULL The length of all duplicated elements in the Unit
of Data Transfer (UDT) has exceeded the size of
the work area. (See Work-area-size in the User
Maintained Variables section.)

+0310 TOO MANY NAMESPACES
FOR ENTITY TABLE

There were more namespace definitions (xmlns)
at the start of the XML document than would fit
into the entity table. The entity table OCCURS
must be increased. (See Maximum-number-of-
entities in the User Maintained Variables section.)

+0311 PREFIX IS TOO LONG
FOR ENTITY TABLE:

A namespace definition (xmlns:) at the start of
the XML document used a prefix that was too
long to fit in the entity table. The length of the
entity argument field must be increased. (See
Maximum-argument-length in the User
Maintained Variables section.)

This message also identifies the offending prefix.

+0312 URL IS TOO LONG FOR
ENTITY TABLE:

A namespace definition (xmlns:) at the start of
the XML document used a URL that was too long
to fit in the entity table. The length of the entity
value field must be increased (See Maximum-
entity-length in the User Maintained Variables
section.)

This message also identifies the offending URL.

+0320 XML SYNTAX ERROR RCFSTCOB has encountered a syntactical error in
the XML document.

This message also points to the offending
character position in the XML document.

The PHASE number in the message should
always be zero - indicating that the error was
found in the first pass of the XML document - if
this number is not zero contact Redvers
Consulting.

+0330 XML CONTENT IS NOT
BASE64 FORMAT

RCFSTCOB has attempted to convert non-base64
data to binary format.

This is likely to be caused by a field, defined as
binary or packed decimal in the CRD that is not
base64 format in the XML document. (See
Binary / Packed Fields in the Picture Clause
section).

This message also points to the offending
character position in the XML document.

The PHASE number in the message should
always be zero - indicating that the error was
found in the first pass of the XML document - if
this number is not zero contact Redvers
Consulting.

www.redversconsulting.com Page 51

RCFSTCOB User Guide

Index

A E

account manager, 7, 39 EBCDIC, 14

activation key, 7 end-of-text, 41

alphabetic, 13 entity declarations, 41, 44

alphanumeric, 13 Entity References, 41

apostrophes, 7 execution time, 6

Arrays, 15 Extensible Markup Language, 41

ASCII, 14 external file names, 43

attributes, 10

F
B

FD, 43

Feedback Code, 27, 28, 29, 49 base64, 14

Feedback Messages, 46, 49 Binary Fields, 14

Feedback Text, 27, 28, 29, 49 BLANK WHEN ZERO, 15

Field Names, 9 BLOCK CONTAINS, 43

figurative constant, 18, 28, 29

C Fill Constants, 18

Calling, 26 I
Calls, 28

CDATA, 42 include, 19

Character Range, 41 INITIALIZE, 18

Character References, 41 install, 7

Cloaking Device, 7

J COBOL compiler, 7, 8

COBOL Record, 26
JUSTIFIED, 15

COBOL Record Definition, 9, 26

Cobol Record Length, 27
L Comments, 42

Contact, 7, 39 large XML documents, 24
copybook, 19 literal, 34, 35
CRD Object Area, 26

CRD Record Count, 26 M

D Maximum Document Size, 42

Maximum-entity-argument, 44
Data Integrity, 41 Maximum-entity-length, 44
Default Tag Names, 9 Maximum-number-of-entities, 44
double quotes, 7 Maximum-number-of-fields, 45
DTD, 9 mixed content, 17

www.redversconsulting.com Page 52

RCFSTCOB User Guide

Multiple Calls, 20, 21

N

namespace declarations, 38, 39, 44

namespaces, 11, 38

numeric edited, 13

Numeric Fields, 12

O

OCCURS, 15, 20

OCCURS DEPENDING ON, 15

operators, 35

Optimizing, 24

Orphan Repeats, 23

override tag names, 10, 18

P

Packed Fields, 14

Parameters, 26

picture clause, 12

predefined entities, 41

prefix, 38

pre-parse, 39

Processing Instructions, 42

program-id, 7, 43

R

RCFSTCMP, 5, 6, 7, 8, 26, 43, 46

RCFSTXML, 5

REDEFINES, 15

Repeating Groups, 20

S

Sample Program, 30

schema, 9, 39

SELECT, 34, 35, 37, 43

SELECT NEXT, 34, 35

single quotes, 7

SOAP, 11

speech marks, 7

structure, 16

SYNC, 15

SYNCHRONIZED, 15

T

tag names, 9

tools, 9

U

UDT, 35

UMV, 43

Unicode, 41

Unit of Data Transfer, 24, 28, 35, 44

URI, 38, 40

User Maintained Variables, 7, 43

V

validate, 5

W

warranty, 43

White Space, 42

work area, 21, 24, 28

Work-area-size, 44

World Wide Web Consortium (W3C), 41

X

XML Document, 26

XML Document Length, 26, 29

XML syntax, 5

xmlnamespaces, 38, 39

Z

zoned decimal, 12

www.redversconsulting.com Page 53

Redvers Consulting Ltd
44 Broadway, London E15 1XH, UK
http://www.redversconsulting.com/

	Preface
	Overview
	Installation
	RCFSTCMP
	RCFSTCOB

	Coding the COBOL Record Definition
	Field Names
	Default Tag Names
	Override Tag Names
	XML Attributes
	XML Namespaces and SOAP

	Picture Clause
	Numeric Fields
	Alphabetic, Alphanumeric and Numeric Edited Fields
	Binary / Packed Fields

	Other Clauses
	BLANK WHEN ZERO
	JUSTIFIED RIGHT
	OCCURS
	Clauses Not Supported

	Structure
	Mixed Content Elements

	Advanced Techniques
	Override Fill Constants
	Excluded Elements

	Repeating Groups
	Using OCCURS
	Using Repeated Calls
	Orphan Repeats

	Optimizing Performance
	Unit of Data Transfer

	Calling RCFSTCOB
	Parameters
	CRD-OBJECT-AREA (input)
	CRD-RECORD-COUNT (input)
	XML-DOCUMENT (input)
	XML-DOCUMENT-LENGTH (input & output)
	COBOL-RECORD (output)
	COBOL-RECORD-LENGTH (input)
	FEEDBACK-CODE (output)
	FEEDBACK-TEXT (output)

	Calls to RCFSTCOB
	The First Call
	Subsequent Calls
	The Last Call

	Sample Program Calling RCFSTCOB

	Selecting XML elements
	SELECT Statement Format
	SELECT Statement Syntax
	SELECT Statement Use
	SELECT Statement Example

	Alternative Namespace Prefixes
	The Instance Document Root
	Performing a Pre-parse
	The xmlnamespaces Element
	xmlnamespaces Example

	Data Integrity
	Character Range
	Character References
	Entity References
	CDATA
	Maximum Document Size
	Processing Instructions
	Comments
	White Space

	User Maintained Variables
	Program-ID
	SELECT Statements
	File Definition Statements
	Work-area-size
	Maximum-number-of-entities
	Maximum-entity-argument
	Maximum-entity-length
	Maximum-number-of-fields

	RCFSTCMP Compile Errors
	RCFSTCOB Feedback Messages
	Index

